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Abstract
The widespread adoption of app hardening techniques in Android
applications makes it more challenging for current analysis tech-
niques to analyze hardened apps, leading to limited analysis cov-
erage. This limitation is mainly due to the difficulties in obtaining
detailed information about Intents, which is essential for compo-
nent communication and the execution of specific events in Android
applications.

In this paper, we introduce eBPF-based AHA-Fuzz, the first
intent-aware greybox fuzzing framework for Android hardened
applications. AHA-Fuzz proposes a valid intent generator to create
valid intent inputs that can trigger diverse Android app behav-
iors. To precisely evaluate the impact of these inputs, AHA-Fuzz
presents a selective coverage feedback approach. Additionally, AHA-
Fuzz introduces approaches for efficiently triggering hard-to-trigger
bugs (e.g., scheduled malware) and detecting information leaks in
hardened applications. Our evaluation results demonstrate that
AHA-Fuzz triggers 92.3% more intents 3.45× faster and executes
23.9% more methods than previous approaches. Additionally, AHA-
Fuzz has discovered 47 previously unknown bugs that existing
approaches cannot detect. The developers of Google, Firefox, and
Facebook have acknowledged 6 out of 47 bugs, and have already
fixed three of them.
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1 Introduction
Android is a mobile operating system holding a 70.69% market
share [8], with approximately 3.9 million Android applications
(apps) available on the Google Play store [10]. Due to various poten-
tial security and privacy issues (e.g., malware or privacy leaks) in An-
droid apps, it is important to analyze Android apps to identify these
issues in advance. However, many apps, whether legitimate or ma-
licious, have increasingly adopted app hardening [26, 28, 45, 47, 49]
techniques (e.g., obfuscators, packers, protectors, or anti-analysis)
to hinder such analyses. In particular, a preliminary analysis we
performed discovers that obfuscation and packing app hardening
techniques are widely applied to 51% of benign apps (selected from
the top 100 most downloaded apps) and 99% of malicious apps (se-
lected 100 apps with the highest download numbers, all of which
are later identified as malicious).

The benign apps generally leverage app hardening techniques to
protect against reverse engineering for unauthorized use (e.g., source
code leakage) and cracking. On the contrary, malicious apps gen-
erally use them to hide code related to malicious behaviors. With
the widespread use of app hardening techniques, applying existing
static analysis approaches to Android apps has become increas-
ingly difficult. More specifically, the main logic of Android apps
(e.g., DEX code compiled from Java) is relatively easy to reverse
engineer. Therefore, hardening techniques like obfuscation and
packing are applied to prevent static analysis of these Android
apps, and such approaches make static analysis unsuitable for hard-
ened apps. On the other hand, dynamic analysis, which observes
runtime behavior, can circumvent the impact of hardening tech-
niques (e.g., obfuscation or packing), making it a more practical
option. Generally, fuzzing techniques [6, 36, 38, 57, 58] are widely
used for dynamically analyzing Android apps.

When fuzzing Android apps, to maximize test coverage, an in-
tent [24] is a key element used in Android development along with
user interactions (i.e., GUIs). In Android, an intent is a message
object used for communication between Android app components,
mainly used to transmit messages to start an activity, launch a
service, or deliver a broadcast. Because Android apps are event-
driven programs that interact with various components, intents
that directly execute components and change program behavior
are crucial to analyze Android apps. Especially, intents are key fac-
tors in triggering and analyzing malicious behaviors because 76.2%
of them use intents to either hide malicious activities or initiate
attacks [12].
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Several existing intent fuzzing approaches [6, 13, 38, 40, 46, 57,
67] have been proposed to analyze Android apps. To perform effi-
cient intent fuzzing, it is required to generate valid intents (i.e., re-
quiring key-value information), measure the impact of generated
inputs (e.g., with coverage feedback messages), and leverage appro-
priate bug-trigger and detection strategies (e.g., altering scheduled
events and detecting memory leaks). However, when targeting hard-
ened apps, existing intent fuzzing approaches need to tackle the
following three challenges.

The first challenge is extracting intent-related information, such
as the key-value pairs (data added to the Intent object’s extras field)
to generate valid intents. For hardened apps, this information is
difficult to extract through static analysis. Additionally, extracting
such information during runtime is also challenging due to the
limitations of existing dynamic analysis approaches [2, 60, 62, 64,
66, 73]. More specifically, these limitations include the detection of
analysis attempts (e.g., anti-debugging [9, 41, 61, 63, 68, 72]), the
porting effort for each version (e.g., system modification [60, 66]),
and significant performance overhead (e.g., DBI [62, 64]). Although
Extended Berkeley Packet Filter (eBPF) [2, 73] provides a further
reliable dynamic analysis environment with lower overhead and
no need for an app or system modification, eBPF cannot directly
identify the layout of objects containing intent-related information
for generating valid intents.

The second challenge is the difficulty in applying coverage feed-
back to measure the impact of the intent fuzzer’s generated in-
puts. More specifically, hardened apps use various obfuscation and
packing approaches, making it challenging to precisely identify
instrumentation targets during static analysis or the app’s initial
loading phase. As a result, traditional coverage instrumentation
methods are hard to apply for these hardened apps. Even when
instrumentation is successful, the Android app may invoke various
events, such as GUI events or background events, alongside intent
events triggered by the intent fuzzer. This causes noisy coverage
feedback (i.e., GUIs and background events-related coverage infor-
mation) that can negatively impact the fuzzer’s ability to measure
the impact of generated intent inputs accurately.

Lastly, even if the fuzzer successfully reaches suspicious code,
the challenge remains in triggering and detecting hidden bugs. For
example, although fuzzer generated inputs may successfully reach a
suspicious section of code, they may fail to trigger a bug if the event
is scheduled under specific conditions. Note that Android apps fre-
quently work by scheduling events through APIs (e.g., 55.2% of mali-
cious activities are triggered through scheduling [12]), meaning that
certain events cannot be easily triggered unless specific conditions
are met (e.g., an event scheduled to trigger after three days [43]).
Additionally, detecting triggered bugs such as information leaks
is challenging with existing approaches [18, 59, 62, 64], as they
require system modifications [18, 59] or impose high-performance
overhead [62, 64] through DBI. In turn, the hardened apps require
more practical and efficient bug detection methods.

In this paper, motivated by the lack of effective approaches to
tackle the aforementioned challenges, we propose the Android
hardened app fuzzer (AHA-Fuzz). To address the first challenge
(i.e., generating valid intent), AHA-Fuzz proposes a valid intent
generator to efficiently obtain the key-value pairs of intents that
are actually registered and in use. For this, AHA-Fuzz first recovers

the Java object layout to locate intent-related information and then
extracts this information to generate valid intents.

To overcome the second challenge of applying coverage feedback
messages, which are essential for measuring the impact of gener-
ated inputs, AHA-Fuzz proposes an eBPF-based coverage feedback
approach. More specifically, this approach can effectively monitor
the execution of methods across Android’s different code patterns,
including AOT-compiled, JIT-compiled, and interpreted code. Ad-
ditionally, coverage feedback may include irrelevant information,
such as GUI events, which can negatively impact intent fuzzing.
To handle this issue, we propose a selective coverage feedback ap-
proach that detects and filters out such noise for more accurate
feedback.

Successfully reaching problematic code is not enough; triggering
and detecting hidden bugs, such as scheduled malware, in hardened
apps remains difficult (i.e., the third challenge). To address this last
challenge, AHA-Fuzz adjusts scheduling APIs to quickly trigger
malware scheduled for delayed execution. More specifically, AHA-
Fuzz utilizes eBPF to hook scheduler-related functions and modify
the associated scheduling times. Additionally, AHA-Fuzz introduces
a lightweight detection method for identifying information leaks
in hardened apps. This approach also utilizes eBPF to monitor APIs
that handle sensitive information, ensuring minimal overhead and
avoiding system or app modifications.

We evaluate AHA-Fuzz on Google Play store malware that uses
complicated intents. Then, we confirm that AHA-Fuzz triggers
92.3% of intent usage patterns compared to existing approaches
while AHA-Fuzz generates appropriate intents 3.45× as fast. Fur-
ther, we measure AHA-Fuzz’s code coverage on 40 top downloaded
Android apps, AHA-Fuzz invokes 23.9% more methods than pre-
vious approaches. We also run AHA-Fuzz on 300 Android apps;
thus, AHA-Fuzz discovers 47 previously unknown bugs including
26 crashes and 21 information leaks. Out of these 47 bugs, the de-
velopers of Google, Firefox, and Facebook have acknowledged two
crashes and four information leaks, and have already fixed three
of the four information leaks. It is worth noting that the previous
works cannot find the 47 bugs discovered by AHA-Fuzz.
In summary, we make the following contributions:
• Designing eBPF-Based Intent Fuzzer. We develop an eBPF-
based intent fuzzing environment that traces all Android events
and extracts the intent parameters required to activate compo-
nents in Android apps. AHA-Fuzz leverages this identified intent-
related information as guidance for mutating inputs. To the best
of our knowledge, AHA-Fuzz is the first work designing and
implementing a greybox intent fuzzer.

• Increasing Code Coverage. We measure AHA-Fuzz’s coverage
on 14 malware and 40 selected Android apps, and confirm that
AHA-Fuzz calls, on average, 92.3% more intents (3.45× faster)
and executes 23.9% more methods compared to previous works.

• Discovering Previously Unknown Bugs.We run AHA-Fuzz
on 300Android apps. AHA-Fuzz discovers a total of 47 previously
unknown bugs. Out of the 47 bugs, 26 bugs cause crashes and
21 bugs leads to information leaks. The developers of Google,
Firefox, and Facebook have acknowledged two crashes and four
information leaks, and have already fixed three of the four infor-
mation leaks.
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Table 1: Prevalence of App Hardening Techniques in Benign and
Malicious Android Apps.

App Obfuscation Packing Anti- Anti- At least one
Debugging Emulator Hardening Tech

Benign 39 22 74 98 100
Malicious 22 94 9 33 100

Total 61 116 83 131 200

2 Background and Motivation
2.1 App Hardening Techniques
App hardening techniques, such as code obfuscation, are designed
to protect an app from static and dynamic analysis [39]. Since
Android apps are generally more susceptible to reverse engineer-
ing compared to other platforms, they frequently incorporate app
hardening techniques to enhance security and protect against unau-
thorized analysis [16].

To examine the prevalence of app hardening techniques in An-
droid apps, we analyze the top 100 most downloaded benign apps
from Google Play and the 100 most downloaded malware samples
from AndroZoo. To this end, we leverage the APKiD [55] to detect
various app hardening techniques. As shown in Table 1, all benign
and malicious apps utilize at least one app hardening technique.

App hardening techniques not only hinder the functionality of
analysis tools, such as debuggers and decompilers, but can also
render certain types of analysis entirely impossible by employing
mechanisms like packing, code encryption, and runtime integrity
checks [16]. Therefore, relying solely on a static analysis approach
is insufficient for effectively analyzing real-world Android apps,
as they often employ complex obfuscation and anti-analysis tech-
niques. This necessitates the use of dynamic analysis methods such
as intent fuzzing to complement static approaches and provide
deeper insights into application behavior during runtime.

2.2 Intent Fuzzing
Intents are a fundamental component of app communication and be-
havior [24]. Android apps use intents for three different use cases:
launching an activity (e.g., screen), starting a service (e.g., back-
ground task), and delivering a broadcast message (e.g., system boot).
Analyzing intents provides critical insights into an app’s function-
ality, communication patterns, and potential security flaws. It’s an
essential part of understanding Android app behaviors. Addition-
ally, various intent fuzzing efforts have been developed to generate
and mutate intent data, ensuring the security, stability, and reliabil-
ity of Android apps [6, 13, 38, 40, 46, 57, 67].

To receive intents from other apps, an app must declare the spe-
cific intents it wishes to handle in an intent filter. There are two
ways to define the intent filter: defining it in the app’s Manifest
file and registering it by calling registerReceiver() at runtime
(i.e., dynamically registered intent). An intent includes standard
fields such as category and data, but the most notable fields are
action and extras. Unlike other standard intent fields, which can
easily retrieve related information from the Manifest file, actions
(especially in dynamically registered intent) and extras can only
be extracted from the application code. The intent can include
(1) an action field to request a specific action from another com-
ponent (e.g., opening a map) and (2) an extras field consisting of
key-value pairs to carry additional information on the requested

Table 2: Comparison of Major Features of Existing Intent Fuzzing
Approaches.
Approach Input Coverage Intent Generation Source Feedback

MATE [6] GUI & Intent DEX intra-procedural analysis None
Iccdroid [38], [13, 46] Intent DEX intra-procedural analysis None
Sasnauskus et al [57] Intent DEX inter-procedural analysis None
IntentFuzzer [67], [40] Intent Key Feedback & DEX analysis None
AHA-Fuzz GUI & Intent Key-Value Feedback Coverage-guided

action (e.g., {BATTERY_LEVEL: 97} to notify battery status). Extras
play a crucial role in intent event analysis, as they are often used
for communicating with backend servers (e.g., Firebase) or deliver-
ing specific payloads in malware. Actions and extras do not have
predefined values for each app and can only be identified through
application code analysis.

Therefore, previous intent fuzzing approaches [6, 13, 38, 40, 46,
57, 67] mainly focus on analyzing code to extract intent-related
details. Table 2 illustrates the main features of these existing in-
tent fuzzing approaches. Some research works including MATE [6]
perform the intra-procedural analysis [13, 38, 46] which maps in-
tents by tracking all invocations of intent-related methods within
the entry point methods of each component. While Sasnauskas
et al. [57] propose an inter-procedural analysis-based approach
that employs path-insensitive CFG analysis to obtain information
regarding intents [65]. On the other hand, hybrid-based approaches
including IntentFuzzer [67] leverage dynamic analysis techniques
to extract the key of extras in runtime [40]. However, all the previ-
ous works are ineffective against app hardening techniques such
as control-flow obfuscation because they rely on static analysis
which can fail to identify the extracting operation of action strings,
and keys or values of extras. Moreover, the previous works do not
utilize the coverage feedback that provides real-time insights into
the areas of code that have been executed during testing, enabling
more effective and efficient analysis. We, thus, require an effective
and efficient intent fuzzing solution that can overcome challenges
in analyzing hardened apps, ensuring broader code coverage, and
reducing redundant tests.

2.3 Dynamic Analysis Framework
To measure code coverage and monitor app behaviors during in-
tent fuzzing, a suitable dynamic analysis framework is essential.
Common approaches to building such a framework include (1) ap-
plication modification, (2) Dynamic Binary Instrumentation (DBI),
(3) system modification, and (4) eBPF.

Application modification-based approaches instrument the DEX
code, which can be easily decompiled. Because this method does
not require separate analysis tools at runtime, it is widely used in
many fuzzing approaches for tracking code coverage [4, 52, 56].
However, this method is limited in handling dynamically loaded
components that are difficult to instrument during static analysis.
It, also, requires repackaging after instrumentation, which com-
promises the app’s integrity and poses challenges when analyzing
hardened apps with integrity checks.

On the other hand, the DBI-based approach instruments a target
app at runtime, and thus, it can handle dynamically loaded code.
However, the DBI-based approach can impose approximately ten
times more overhead during app analysis, including code coverage
measurement [64]. Moreover, the DBI-based approach cannot be
effectively used to analyze apps that implement anti-debugging
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Figure 1: Overview of AHA-Fuzz’s Workflow.

techniques because such techniques detect and interfere with in-
strumentation tools [9, 41, 61, 63, 68, 72].

The system modification approach leverages a customized ver-
sion of the Android Open Source Project (AOSP). This customized
system allows for more precise analysis (e.g., instruction analysis)
compared to application-level analysis methods. However, build-
ing a customized system requires significant engineering effort
to understand and modify the Android Runtime (ART) source
code [42, 54]. In addition, the huge manual engineering effort must
be repeated each time a new version is released.

Lastly, the Extended Berkeley Packet Filter (eBPF)-based ap-
proach enables observation without compromising app integrity
by setting tracing points with probes [2, 73]. However, because
events can only be observed through predefined probes, the scope
of events that can be monitored is inherently limited. For example,
using a probe requires knowledge of the target code address. How-
ever, code executed by an interpreter or JIT, where the address is
unknown at the time of setting tracing points, cannot be monitored.
Moreover, eBPF can only access raw bytes in memory, making it
difficult to observe Java-specific information.

Consequently, the current analysis frameworks face considerable
challenges in collecting code coverage and app behaviors during the
fuzzing of hardened apps, highlighting the need for an enhanced
analysis framework to effectively handle such apps.

3 Threat Model
Our threat model assumes that both attackers and benign users
can install malicious apps on the target victim devices. We also
assume that several hardening techniques are applied to the mali-
cious apps to prevent static or dynamic analysis. Specifically, we
consider (𝑖) runtime-based obfuscators such as packers that hinder
static analysis, (𝑖𝑖) integrity checks that detect app tampering, and
(𝑖𝑖𝑖) protectors that detect dynamic analysis environments. In addi-
tion, we assume that an attacker can directly trigger vulnerabilities
(e.g., crash or information leak) in victim apps by sending crafted
intents. The primary goal of AHA-Fuzz is to analyze such malicious
apps through fuzzing, even in hardening conditions.

4 Design
4.1 Overview of AHA-Fuzz
AHA-Fuzz internally incorporates GUI fuzzing because analyzing
all behaviors of Android apps requires both intents and GUI events.
More specifically, GUI fuzzing can trigger dynamically registered in-
tents, while intent fuzzing can directly invoke components that are
otherwise challenging to access via the normal GUI path (e.g., ac-
tivities visible only under certain conditions or settings screens

launched exclusively through specific intents). By using these two
approaches complementarily, the test coverage of Android apps
can be significantly increased.

For GUI fuzzing, we leverage APE [36], the state-of-the-art GUI
fuzzer that performs fuzzing solely on GUI elements not gener-
ally influenced by hardening techniques. To effectively balance
GUI and intent inputs according to the characteristics of the target
app, AHA-Fuzz dynamically adjusts the ratio between GUI and
intent inputs using AHA-Fuzz’s customized feedback messages,
as discussed in Section 4.3.2. For intent fuzzing, we generate ini-
tial seeds by analyzing the Android manifest file, which defines
all statically registered intent entry points and is not protected
by hardening techniques. Additionally, we capture dynamically
registered intent events (Section 4.2.2) by hooking related meth-
ods (e.g., registerReceiver()). Note that the manifest file does not
include information about intent extras. AHA-Fuzz alternates be-
tween generating GUI test inputs (using APE) and intent test inputs
generated internally by our proposed intent fuzzer.

We note that AHA-Fuzz internally uses eBPF to create a reliable
low-management and performance overhead analysis environment.
Specifically, eBPF allows observation of system events at the kernel
level without modifications to the app or system, enabling stable
and accurate monitoring of events. Moreover, the overhead from
eBPF—approximately 1.5 times [2, 50]—is considerably less than
the roughly 10 times overhead [64] typically incurred by DBI-based
solutions. However, eBPF-based app analysis introduces several lim-
itations (e.g., understanding Java object layouts and generating ap-
propriate feedback messages for valid input generation). AHA-Fuzz
addresses these limitations (detailed in Section 4.2 and Section 4.3)
to provide stable and precise analysis environments.

The overall architecture of the eBPF-based AHA-Fuzz is illus-
trated in Figure 1. To generate diverse and valid intent inputs and
increase bug detection capability, AHA-Fuzz includes the following
three main components:

(i) Valid Intent Generator (Section 4.2): To generate valid intent,
obtaining the key-value pair values of intent extras that are
actually registered and in use is important. For this, AHA-
Fuzz first recovers the Java object layout to locate intent-
related information (Section 4.2.1) and then extracts this
information to generate valid intents (Section 4.2.2).

(ii) Coverage Feedback Generator (Section 4.3): To guide the
fuzzer in exploring deeper parts of the hardened app’s code,
it is essential to evaluate the impact of generated inputs using
coverage feedback messages. For this, AHA-Fuzz introduces
the first coverage feedback technique among intent fuzzers
(Section 4.3.1). Additionally, it proposes a method to reduce
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noise from observing non-intent-related events for more
accurate coverage feedback (Section 4.3.2).

(iii) Bug Detection Capability Enhancer (Section 4.4): Even if the
fuzzer successfully reaches problematic code, triggering and
detecting hidden bugs remains a challenge. AHA-Fuzz pro-
poses a technique to quickly trigger malware that is sched-
uled to execute after a long delay by adjusting scheduling
APIs (Section 4.4.1). Additionally, AHA-Fuzz introduces a
lightweight detection method to identify information leaks
in hardened apps (Section 4.4.2).

4.2 Valid Intent Generator
For effective intent fuzzing, generating intents with valid key-value
information of intent extras is important. This subsection describes
how AHA-Fuzz obtains currently available key-value information
and creates valid intents.

4.2.1 Recovering Java Object Layout. To create valid intents for
fuzzing, required essential information (i.e., key-value information
of the intent presently in use and stored inmemory) can be extracted
from an allocated Java object. However, to accurately extract the
required information, the Java object’s layout must be recognized.
For example, the value field, which is the specific value assigned to
the intent key, exists within the Java object. To extract information
from this value field, the offset within the Java object’s memory
layout needs to be identified. However, we cannot directly identify
offset information because memory layout information is lost after
AOT-compilation. The existing solution [64] for observing Java
information from assembly involves manually analyzing each offset,
but it cannot support all Java objects, as offsets continuously change
with each version and device.

To address this issue, AHA-Fuzz proposes a method for recon-
structing Java object layouts by cross-referencing DEX code with
its corresponding AOT-compiled assembly code. During the AOT-
compilation, field names and type information in the DEX code are
optimized away or removed, making it difficult to determine the off-
set of specific fields by examining the assembly alone. However, we
note that AOT assembly follows the JNI calling convention, which
passes the second argument (e.g., the this pointer) to r1 and assigns
subsequent arguments to r2 and beyond. This convention allows us
to distinguish pointers to Java objects and identify memory access
instructions involving these pointers. Consequently, we consider
only memory access instructions performed through these pointers
as object field access instructions. By mapping these field access
instructions in the DEX bytecode to actual operations (e.g., memory
load/store) in the AOT assembly, AHA-Fuzz enables the inference
of field offsets and their relationships within Java objects.

Note that analyzing the layout of every object used across all
Android methods is inefficient. Since the extracted layout informa-
tion is used for extracting intent-related information (Section 4.2.2),
key-value feedback generation (Section 4.2), selective coverage
feedback generation (Section 4.3.2), and scheduler manipulation
(Section 4.4.1), AHA-Fuzz only focuses on extracting the layouts
of objects utilized in methods relevant to these four features. For
example, AHA-Fuzz targets Intent-related classes, such as Intent
and IntentFilter, and only analyzes the layouts of objects used

Algorithm 1: The algorithm of Java object layout recovering
Input :𝐹 ,𝑇𝑐
𝐹 : a given OAT file contains DEX and assembly code;
𝑇𝑐 : a given target class;
𝑆𝑝 : a set of pointers pointing to target Java object;
𝑀𝑒 ⇐ a map for storing fields with their exact offset;
𝑀𝑝 ⇐ a map for storing fields with their possible offsets;
Output :Target classes’ layout information

// Step 1: Extract field offset information in target instruction

1 forall 𝑐𝑙𝑎𝑠𝑠 ∈ 𝐹 do
2 if 𝑐𝑙𝑎𝑠𝑠.isClassIncluded (Tc ) then
3 𝑚𝑒𝑡ℎ𝑜𝑑 ⇐ class.method;
4 forall 𝑖𝑛𝑠𝑡 ∈ method.DEX do
5 if is_Field_Access(inst) then
6 𝑚𝑒𝑡ℎ𝑜𝑑.field_update (inst.field) ;

7 𝑆𝑝 ⇐ getTargetPointer (method ) ;
8 forall 𝑖𝑛𝑠𝑡 ∈ method.Asm do
9 TrackingPointer (inst, 𝑆𝑝 ) ;

10 if is_Field_Access(inst, 𝑆𝑝 ) then
11 if Direct_Mapping(inst, method.field) then
12 𝑀𝑒 [method.field] ⇐ inst.offset;

13 else
14 𝑀𝑝 [method.field] .add (inst.offset) ;

// Step 2: Recursively eliminate possible offsets, find exact offset
15 offsets ⇐ ∅;
16 forall 𝑓 𝑖𝑒𝑙𝑑 ∈ 𝑀𝑒 .𝑓 𝑖𝑒𝑙𝑑 do
17 offsets.add (Me [field ] ) ;
18 forall field ∈ 𝑀𝑝 .field do
19 𝑀𝑝 [field] ⇐ 𝑀𝑝 [ 𝑓 𝑖𝑒𝑙𝑑 ] \ offsets;
20 if 𝑙𝑒𝑛 (𝑀𝑝 [field] ) ≡ 1 then
21 offsets.add (Mp [field ] ) ;
22 𝑀𝑒 [ 𝑓 𝑖𝑒𝑙𝑑 ] ⇐ 𝑀𝑝 [ 𝑓 𝑖𝑒𝑙𝑑 ];
23 goto line 20

24 return𝑀𝑒 ,𝑀𝑝

by methods defined in these classes, which can be easily identified
from DEX code.

Algorithm 1 illustrates the DEX and assembly field access map-
ping process. First, AHA-Fuzz targets all methods of target classes
(lines 1–3) and collects field access instructions from DEX bytecode
(lines 4–6). AHA-Fuzz extracts pointer sets pointing to target Java
objects in assembly code (line 7). Then, using alias analysis over
the pointer sets extracted earlier (line 7), AHA-Fuzz identifies addi-
tional field access instructions in the assembly (lines 8–10). Direct
mappings allow certain offsets to be immediately resolved (lines
10–12), while other cases (e.g., related to branch conditions) are
saved for later resolution (lines 13–14). In the next step, AHA-Fuzz
performs additional mapping of unresolved offsets for each class.
First, AHA-Fuzz initialize the offset set of the target class (lines
16-17) using directly mapped values (lines 11-12). AHA-Fuzz then
iteratively refines the set by removing any offset from𝑀𝑝 that also
exists in offsets (line 19). If a possible offset set contains only one
value (line 20), it becomes an exact offset and is updated recursively
(lines 21–23). Consequently, AHA-Fuzz returns the exact offsets
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Figure 2: Object Layout Recover Examples in java.util.ArrayList.

and the possible offset candidates for still unresolved fields (line
24).

Figure 2 shows examples of how AHA-Fuzz identifies object
layouts in java.util.ArrayList. In Case 1 (left of Figure 2), the
size function is a simple getter that returns the size field of an
ArrayList object. Because it only includes a load operation, we can
directly map the field access in the DEX code (line 1, iget Int;
ArrayList.size) to the corresponding assembly instruction (line 1,
ldr w0, [x1, #16]). Consequently, we know the action field is at
offset 16.

In contrast, the get function in Case 2 (middle of Figure 2) in-
cludes branch instructions, making it more complex to establish a
direct mapping between DEX and assembly. Because AOT-compiled
assembly follows the JNI calling convention, we can determine
which pointer is stored in each register during the function pro-
logue. Based on this information, path-insensitive pointer tracking
allows us to identify potential field access instructions. For ex-
ample, lines 10 and 15 in the get assembly indicate access to the
elementData field of the ArrayList. From this, we can infer that
elementData could be at offset 12 or 16. Additionally, since Case 1
(i.e., size) already confirms that offset 16 corresponds to the size
field, we infer that the elementData field must be at offset 12.

However, the modCount field in Case 3 (right of Figure 2) is not
covered by direct mapping (Case 1) and inferring mapping (Case 2),
where precise offset inference is not possible. AHA-Fuzz handles
this unresolved field by continuously selecting its offset at random
from the candidate set during fuzzing. For example, modCount has
possible offsets of 8 or 20, which are not resolved in the direct
mapping or inferred mapping steps. During fuzzing, AHA-Fuzz ran-
domly selects an offset from the candidate set for each unresolved
field to simulate various object layouts.

We note that recovering Java object layouts is challenging when
direct and inference mapping do not occur frequently enough. How-
ever, we find that sufficient mapping occurs in most classes. This is
mainly because most classes contain getter/setter methods, which
introduce conflicts and enable offset retrieval without explicit in-
ference. As shown in Table 3, according to our analysis on all 2,541
classes within the Android framework module that define Intent-
related classes, we find that 42.2% of cases involve direct mapping
(Case 1), generating conflict. Consequently, this allowed us to accu-
rately infer offsets for another 40.6% of cases (Case 2). Relatively,
only a small portion—17.2% of fields—cannot be precisely resolved
to a fixed offset. However, even for these, AHA-Fuzz continues
fuzzing by randomly selecting offsets from the candidate set to
simulate various potential layouts of the intent object.

Table 3: Java object layout recovery result. Cases 1, 2, and 3 corre-
spond to direct mapping, inferring mapping, and candidate genera-
tion, respectively.

Module name Classes Fields Case 1 (%) Case 2 (%) Case 3 (%)

content 982 1,729 669 (38.7%) 681 (39.4%) 379 (21.9%)
app 1,559 3,465 1,523 (44.0%) 1,428 (41.2%) 514 (14.8%)

Total 2,541 5,194 2,192 (42.2%) 2,109 (40.6%) 893 (17.2%)

4.2.2 Key-value Feedback Generator. Section 4.2.1 allows AHA-
Fuzz to recover the Java object layout. Based on this layout informa-
tion, this section explains how to extract intent-related information
stored in objects. Unlike C/C++, Java inherently manages elements
such as strings ("msg") as objects. Therefore, understanding the
layout of objects (e.g., strings) that store frequently used intent key-
value pairs is essential for accurate extraction. Using the key and
value extraction methods introduced in this section, these extracted
values are sent to the fuzzer as key-value feedback messages (not
coverage feedback). These messages are utilized to construct valid
intents.
Extracting Intent Key Set. To extract the key used in the ex-
tras field of intents, we utilize the following two patterns, as in
previous research [40, 67]. First, since the parameter of the intent-
related extra getter functions is the key, hooking and analyzing
these functions allows us to obtain the currently used keys. For
this, AHA-Fuzz hooks all related getter functions using eBPF. For
example, encountering getStringExtra("format") indicates that
"format" is currently used as a key for a particular intent.

The second approach for retrieving currently used keys is to hook
Bundle-related functions, such as getChar(). This is because, the
extras field is internally implemented as an Android Bundle [21],
as a Bundle is essentially a map structure used by Android for
storing key-value pairs. By tracking these Bundle-related functions,
AHA-Fuzz can additionally extract currently used keys.
Extracting Intent Value Set. Finding the value corresponding to
a key is important for testing an app’s diverse and deep code. For
example, Android apps can change execution flow depending on
the value in the intent parameter (e.g., line 4 in Figure 3). However,
unlike the method of observing keys from intents, there are no
predefined patterns or APIs to retrieve values from intents.

To address this challenge, we manually analyze various key-
value code usage patterns on a total of 405 apps, including all 105
malware samples summarized byCao et al. [12] and the top 300most
downloaded benign apps from the Google Play Store as of October
1, 2024. Our analysis find that, in most cases, extras values are
used in comparison operations, which then trigger the execution
of additional code or events. More specifically, all extra values
used in the malware samples are detected by checking comparison
operations. In the 300 most downloaded apps, we identify 6,106
unique intents using String extras, 67% (4,076 cases) of which are
detectable through comparison operations. The remaining 33% are
used purely for data transmission, not directly contributing to new
code/event execution. Consequently, we find patterns that most
values are checked through comparison operations (e.g., equals()
or contains()). Therefore, AHA-Fuzz hooks comparison operations
through eBPF, extracting values used in comparisons as candidate
values, and sends them to the fuzzer through key-value feedback
messages.
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3.     if ( payload != null ) {
4.         if (payload.contains(“LEAK”) {
5.             Call_Malicious(intent);
6.    }}}

Iteration

1
2

3

Iteration 1

action : “SMS”Input

Iteration 2

getStringExtra(“msg”)
Observed
Method

Feedback
Generation

action : “SMS”
extras : {“msg”: “tmp”}

payload.contains(“LEAK”)

Iteration 3
action : “SMS”

extras : {“msg”: “LEAK”}

Call_Malicious(intent)

payload.contains(“LEAK”)

“tmp”
Find Candidate

extras : {“msg”: “tmp”}

Generate random Str

In Call_Malicious()..
Mutate until coverage 

growth stops

intentfilter = new  IntentFilter (“SMS”);
registerReceiver (receiver, intentfilter);

IntentFilter
…

mActions

… #16

#12

String

#8
…

count
#12

hash

”SMS”
#16

#8

…

Dynamically
register

Intent event

…

element

size

ArrayList

action
Data

…

Object Layout 

Figure 3: AHA-Fuzz’s Key-Value Information Extraction Examples.

Figure 3 shows howAHA-Fuzz extracts key and value set through
API hooking and key-value feedback. AHA-Fuzz starts fuzzing with
an intent (e.g., “SMS”) as an initial seed that does not include key-
value information. Note that AHA-Fuzz obtains the initial seed
by analyzing the object layout of IntentFilter, which is used to
register the intent event dynamically. Since AHA-Fuzz hooks all
extra-related getter functions, including getStringExtra(), to ex-
tract key values, AHA-Fuzz can capture the “msg” key from the
getStringExtra() function (line 2). This allows AHA-Fuzz to create a
key-value feedback message that specifies the intent parameter and
requires “msg” as a key. However, getStringExtra() returns null
at line 2 because the initial intent does not have a key (e.g., “msg”).

Next, AHA-Fuzz sends a new intent that has “msg” as the key
and a random string as the value. Thus, the executed intent triggers
lines 2 − 4. In this second fuzzing attempt, AHA-Fuzz fails to visit
line 5 because this basic block requires a specific value (i.e., “LEAK”)
in the intent parameter. Since AHA-Fuzz hooks comparison-related
APIs including contains(), AHA-Fuzz can obtain an additional
candidate value “LEAK”. In the next fuzzing attempts, AHA-Fuzz
eventually visits line 5 utilizing an intent that includes the needed
key-value information.
Mutation Strategy. AHA-Fuzz applies different mutation strate-
gies to the values of extras, depending on their type: primitive,
string, and Java object types (e.g., Binder), which we refer to as
special types. For Java primitive types, AHA-Fuzz utilizes AFL-style
mutations, including random bit flips. String values are mutated
using our key-value feedback (Section 4.2.2) algorithm. Mutating
special types is challenging because their object layouts differ across
apps. Currently, AHA-Fuzz supports special type mutation only
through constructor invocation, and we leave this implementation
improvement (e.g., recovering specific special type layout using our
Java object layout recovery Algorithm 1) as future work (see Sec-
tion 8). We also note that string objects are more commonly used
as values, whereas special types are relatively rare. Table 4 shows
the analysis of extras value types used in the 300 most downloaded
apps from Google Play. According to this analysis, string objects
account for 49.5% and primitive types for 44.2%, while special types
comprise only 6.5% of all extra values.

Table 4: Type ratio analysis of extras values used in 300 most down-
loaded apps.

Type category (#) Mutation Strategy # of unique extras values (%)

Primitive (8) AFL-based 9,317 (44.2%)
String (1) Key-Value feedback 10,395 (49.3%)
Special (5) Invoke constructor 1,369 (6.5%)

Total (14) - 21,081 (100%)

4.3 Coverage Feedback Generator
Although all existing intent fuzzers are blackbox-based fuzzers, cov-
erage feedback on how many/new methods are triggered through
generated intents enables more efficient input generation. For ex-
ample, Figure 3 shows that key-value feedback can further trigger
possible execution flow paths, but it requires several iteration steps.
Without coverage feedback, the fuzzer cannot estimate whether
further iteration are necessary or if the current input is sufficient.
For this reason, AHA-Fuzz, as the first intent fuzzer, introduces
coverage feedback to evaluate the quality of each generated intent.
Additionally, coverage feedback may include irrelevant information,
such as GUI events, which can negatively impact intent fuzzing.
To address this issue, we propose a selective coverage feedback ap-
proach that detects and ignores such noise, enabling more accurate
utilization of feedback messages.

4.3.1 Coverage Instrumentation. AHA-Fuzz, based on eBPF, utilizes
method-level coverage feedback. eBPF observes methods through
probes that require the target code address, which can be obtained
from AOT-compiled code. Therefore, using eBPF, we can monitor
which methods are executed within AOT-compiled code due to
intents. However, it is difficult to obtain address information for
eBPF hooking in JIT-compiled code and the interpreter. For this, we
disable JIT-compiled code execution (will be handled as interpreter
code) through simple option change, without modifying the system,
but still cannot disable interpreter code.

Note that interpreter code is not compiled and is executed at
runtime via the interpreter, making it challenging to attach eBPF
probes. To address this, we attach probes to the interpreter engine
that executes the interpreter code to observe its execution using
eBPF. For this, we analyze the interpreter engine in ART and iden-
tify three general interpreter execution patterns as follows. First,
each entry point of interpreter execution requires the following pa-
rameters to obtain the program’s current state: ArtMethod, Thread,
and stack frame objects. Second, ART updates the ’hotness’ counter,
which is used in JIT-compiled code, before executing interpreter
code. Third, ART uses architecture-specific assembly code within
its core interpreter mechanism to optimize performance.

Based on these observations, we leverage CodeQL [20] to iden-
tify the entry point of the interpreter. Note that with CodeQL, code
(e.g., Android code) is transformed into a database, enabling in-
depth analysis through custom queries (e.g., three defined patterns).
Additionally, to evaluate whether the method of identifying inter-
preter entry points using CodeQL and the three identified patterns
is valid across different Android versions, we test Android versions
from the past five years (i.e., since 2019) and find that all possible
interpreter entry points are identified through our three patterns.
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4.3.2 Selective Coverage Feedback. Coverage feedback can be gen-
erated bymonitoring all methods; however, observing everymethod
may lead to noisy feedback from events unrelated to intents, neg-
atively impacting intent fuzzing. For example, specific Android
events include GUI events and background events that are exe-
cuted by service components, and these unrelated events can also
generate coverage feedback that negatively affects intent fuzzing.

To address this problem, one is willing to wait until the app is
idle after sending the intent without delivering any events. Yet, this
method is not only time-consuming but also, given the event-driven
nature of Android apps, background tasks may cause the apps to
exit this idle state unexpectedly. Therefore, we need to distinguish
between events caused by AHA-Fuzz’s intent fuzzing and other
Android events caused by GUI fuzzing.
Analyzing Events Invoked by Intents. To distinguish events
generated by intents, understanding the execution path of events
via intents in Android is important. As shown in Figure 4, intents
can be delivered to three main components: Activities, Services, and
Broadcast Receivers. These intents pass through the MessageQueue
(for Activities) or the ActivityManager (for Services and Broadcast
Receivers) and corresponding events are executed via predefined
methods (e.g., dispatchMessage() for Activities). Based on these
patterns, we can track the start (e.g., dispatchMessage()) and end
(e.g., dispatchMessage() returned) of these methods using eBPF,
focusing only on events occurring during the method’s execution.
This helps mitigate the noise issue described earlier. Furthermore,
we validate the consistency of these patterns across Android version
updates by formalizing them and checking them using CodeQL.
Consequently, we find that this pattern has remained consistent
over the past five years of Android version updates (i.e., since 2019),
ensuring the ongoing effectiveness of this approach.
Execution Balancing Between GUI and Intent Fuzzers. By
identifying events triggered by intents and further distinguishing
GUI events occurring on the main UI thread, the impact of inputs
generated by each GUI and intent fuzzer can be evaluated. Initially,
the GUI and intent fuzzers are executed at an equal 1:1 ratio to
ensure fairness. However, AHA-Fuzz dynamically adjusts the exe-
cution ratio of each fuzzer based on the observed impact of their
generated inputs. For example, if an app generates a higher propor-
tion of events through intents compared to GUI interactions, the
execution ratio of the intent fuzzer is increased accordingly.

4.4 Bug Detection Capability Enhancer
Although AHA-Fuzz generates various intents using AHA-Fuzz’s
key-values and coverage feedback, it may still miss some bugs trig-
gered under specific conditions (e.g., scheduled malware) or fail to
detect triggered bugs (e.g., information leak due to performance

overhead). By addressing these primary challenges, such as de-
tecting scheduled malware and efficiently identifying information
leaks, we further enhance AHA-Fuzz’s bug detection capability.

4.4.1 Scheduler Manipulation. Scheduling events in dynamic anal-
ysis reduces fuzzing effectiveness. For example, an Android app can
execute code at a point in time one day after installation through a
scheduling event. Additionally, some malware leverages the sched-
uler to enable periodic activation and deactivation, helping it evade
detection. More specifically, by avoiding continuous activation, the
malware only operates when necessary, reducing its chances of be-
ing detected. A straightforward solution is to modify the application
or system code to fast-forward the scheduling time, but identifying
scheduling time under hardening techniques is challenging and can
cause system instability [11].

To address these issues, we utilize eBPF to hook scheduler-related
functions and adjust the associated scheduling times. More specif-
ically, we manipulate the scheduling event to occur quickly by
overwriting the scheduling time stored in memory (e.g., adjusting
12 hours to 10 minutes). In particular, we focus on a scheduling
event registered by Android framework APIs (e.g., AlarmManager,
JobScheduler, or WorkManager). For scheduling events requiring
long waiting time (e.g., several hours), we leverage a helper func-
tion ‘bpf_probe_write_user()’ in eBPF to decrease the waiting
time stored in user space memory. For this, we insert an eBPF
program into the return statement of the scheduling time setter
method, enabling manipulation of the scheduling time for faster in-
vocation. Note that scheduling APIs are well-documented [27], and
we can retrieve the value of the scheduling time value as described
in Section 4.2.1.

4.4.2 Detecting Information Leak. Both benign and malware apps
can leak users’ sensitive usage data (e.g., locations or contacts)
without informing the user or obtaining consent. To detect such
information leaks, existing approaches [3, 7, 18, 59, 62, 64] con-
duct static/dynamic taint analysis to track source APIs (e.g., return
sensitive data) to sink APIs (e.g., potential leak sites). However, ex-
isting approaches are not directly applicable to hardened apps. More
specifically, propagating taint at the instruction level during run-
time requires modifying the application to statically instrument the
app code [3, 7, 59], which not only necessitates bypassing integrity
checks but also provides limited support for dynamically loaded
code, as discussed in Section 2.3. Moreover, starting with Android
7, the presence of diverse execution models—AOT-compiled, JIT-
compiled, and interpreted code [33]—has limited the effectiveness
of existing taint analysis approaches that rely on system modifica-
tion [18] or DBI [62, 64], as these approaches typically support only
a subset of executionmodes (e.g., DBI-based tool namedMalton [64]
can track taint only in AOT-compiled code).

To address these issues, AHA-Fuzz conducts a lightweightmethod-
level taint propagation analysis instead of instruction-level taint
propagation. As commonly mentioned in existing information leak
detection approaches [18, 59, 62, 64], sensitive information is typi-
cally stored and managed as primitive types, such as int or String
objects. For example, important network information (e.g., SSID) to
be protected is generally stored as a String object. To monitor these
sensitive information flows, AHA-Fuzz leverages eBPF to monitor
APIs that process these primitive values, such as methods in the
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Java standard library. Specifically, by tracking sensitive primitive
values as they pass through API parameters (inputs) and return
values (outputs), AHA-Fuzz can detect potential information leaks.

Figure 5 shows how taint propagation is performed at themethod-
level. Method-level propagation tracks primitive type values and
string values passed through framework APIs, enabling the tracing
of data flows from sources (getCid) to sinks (write). AHA-Fuzz
utilizes eBPF to hook each API call (toString), including both its
entry and return points, to track input parameters and output re-
turn values. Consequently, method-level taint analysis can detect
information leaks when tainted values reach sink APIs—even for
dynamically loaded code.

Furthermore, we identify additional possible source APIs to de-
tect information leaks in recent Android apps. To detect information
leaks through taint analysis, recent research [14, 37, 69, 71] mainly
relies on the source and sink API set defined by FlowDroid [5]. How-
ever, we observe that FlowDroid’s API set does not include some
APIs introduced in the last five years of Android releases. To detect
additional information leaks in recent apps, we manually review
the official Android documentation [31, 32] to identify newly in-
troduced APIs. We also analyze the official documentation [34, 35],
particularly discussions of potential security and privacy issues, to
identify additional possible information leak attack scenarios. As
a result, we extend the original FlowDroid API set by defining 14
additional source APIs.

5 Implementation
We adapt the BPF Compiler Collection (BCC) framework [44] to
create an eBPF analysis environment. We also integrate AHA-Fuzz
with an existing GUI-based fuzzing framework [36] to compare its
effectiveness. Our implementation consists of Python for the BCC
framework, Java for intent fuzzing, and C for eBPF programs. The
total lines of code (LoC) are around 3,000.
eBPF Environment. The eBPF feature supported by the Linux
kernel can be used in Android kernels based on Linux systems
without any modifications. However, it does not provide a user-
friendly environment because most of the documentation for the
eBPF toolchain assumes standard Linux instead of Android. We
utilize scripts provided by the Extended Android Tools [19] to
leverage the BCC framework [44], through cross-compilation using
the Android native development kit [25].

To observe AOT-compiled code, we extract method addresses
from OAT files using oatdump and hook them in the Zygote process
to monitor all subsequent app processes, similar to BPFroid [2]. For

interpreter execution, we hook the interpreter entry points identi-
fied in Section 4.3.1 and extract the DEX method index contained
in the ArtMethod structure through eBPF to monitor which method
is called. To monitor only the targeted app’s calls, we filter each
app process through a unique UID using eBPF.
Fuzzing Environment. We note that AHA-Fuzz performs GUI
fuzzing and intent fuzzing simultaneously. For GUI fuzzing, we
select APE [36] because it shows the best performance and is im-
plemented on top of Android’s default GUI fuzzer (Monkey [30]).
We implement AHA-Fuzz’s intent fuzzing on top of APE, and it
operates separately from the APE fuzzer. Thus, AHA-Fuzz’s intent
fuzzing can run with other GUI fuzzers.

6 Evaluation
We evaluate AHA-Fuzz’s effectiveness in analyzing hardened apps.
Specifically, we present our evaluation results by addressing the
following research questions.

RQ1 Is AHA-Fuzz capable of creating valid intents (i.e., an intent
requiring specific extras) called by malware? (Section 6.2)

RQ2 How does AHA-Fuzz’s fuzzing algorithm (key-value feed-
back and selective coverage feedback) affect the performance
of the fuzzing? (Section 6.3)

RQ3 Does AHA-Fuzz guarantee increased coverage compared to
previous works? (Section 6.4)

RQ4 Can AHA-Fuzz discover previously unknown bugs that pre-
vious works cannot find? (Section 6.5)

6.1 Evaluation Setup
We execute AHA-Fuzz on a machine running 64-bit MacOS Sonoma
14.4.1 (23E224) with a 24-core CPU (Apple M2 Ultra) and 192 GB of
RAM. We configure each emulator using Android 13 with 2 cores
and 8 GB of RAM.
Ground-truth Malware Dataset. To evaluate the performance
of intent fuzzers, measuring the number of triggered malicious
behaviors is more appropriate than simply counting code coverage,
given that 76.2% of malware uses intents to hide malicious behavior
or initiate attacks [12]. Therefore, we use the number of triggered
malicious behaviors in malware as the metric for evaluating fuzzers.
We also use the Google Play store malware dataset provided by
Cao et al. [12]. In particular, this dataset identifies 105 different
malware families and creates one report per family. We thus select
a total of the 105 malware that has the report from the dataset. The
report describes preconditions for triggering malicious behaviors.
For instance, preconditions include payload (e.g., a key-value pair
{status: StartAdService}) for intent events or scheduling events
that malware abuse. We use such events required to trigger mali-
cious behaviors to evaluate whether AHA-Fuzz can trigger them.
Furthermore, among the Android malware, we select 14 out of the
105 apps satisfying the following criteria:

(1) The malware exploits an intent that requires key-value pairs
and/or a scheduling event to execute malicious behaviors.

(2) The malware can be run on a 64-bit ARM Android machine.
(3) We can reproduce malicious behaviors reported in study [12]

(e.g., connecting command and control servers).
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Table 5: Intent usage patterns on 14 malicious apps. ‘Improved’ column denotes improvements achieved by AHA-Fuzz in the terms of patterns
and times to find them, compared with the others. ✓denotes patterns invoked by AHA-Fuzz. ✗expresses that AHA-Fuzz fails to invoke the
patterns. ‘Time’ represents improved time to invoke a pattern compared with the most fast one that invokes the same pattern.

Family Patterns APE MATE ICCBot IntentFuzzer AHA-Fuzz Improved Pattern Details(sec) (sec) (sec) (sec) (sec) Patterns Time (X)

AceCard M - 235 108 115 88 - 1.23× E : SMS, PayloadE - - - - 89 ✓ -

AgentBKY E - - - - 30 ✓ - E : SMS
E - - 121 136 89 - 1.36× E : Google Firebase

Bahamut M - 1,251 647 829 38 - 17.03× M : Multiple Entrypoints
E - - - - 44 ✓ - E : SMS

ClickerGenG M - 283 171 140 74 - 1.89× S : Run After 6 hoursS - - - - 741 ✓ -

HiddenAdOS M - 643 322 464 86 - 3.74× E : Google FirebaseE - - 279 501 172 - 1.61×
IndexY E - - - - 55 ✓ - E : SMS, Multiple Entrypoints

ProjectSpyHRX
M - 192 44 50 35 - 1.26× E : SMS

E : Malware developer definedE - - - - 30 ✓ -
E - - - - - ✗ -

Reputation1_2019
M - 281 141 101 32 - 3.15×
M - 306 87 128 42 - 3.05× E : Dynamically registered, developer defined
E - - 201 133 43 - 3.09×

SMSAndroidOSWesp E - - - - 52 ✓ - E : SMS, Payload

Solid M - 174 61 55 50 - 1.1× E : Payload, Google FirebaseE - - - - 393 ✓ -

Sonyvpay M - 420 112 128 33 - 3.40× E : SMS, PayloadE - - - - 40 ✓ -

SpyBankerHU M - 301 104 114 31 - 3.35× E : SMSE - - - - 43 ✓ -
TrojanDropperAgentCIQ S - - - - 1,394 ✓ - S : Run after 24 hours

Vilny
M - 362 98 109 32 - 3.06×
M - 265 104 99 33 - - S : Run after 26 hours
S - - - - 156 ✓ -

Total (%) 0/28 11/28 15/28 15/28 27/28 92.3% 3.45×(0.0%) (39.3%) (53.4%) (53.4%) (96.4%)

We confirm that: (𝑖) 45 out of 105 apps require key-value pairs,
and/or abuse the scheduling API; (𝑖𝑖) 38 out of 45 apps are compati-
ble with 64-bit ARM Android machines; and (𝑖𝑖𝑖) we successfully
reproduced malware behaviors in 14 out of these 38 apps.
Benign App Dataset.We evaluate AHA-Fuzz’s performance on
benign apps and find previously unknown bugs that prior works
are hard to find. To this end, we collected the most downloaded 300
apps from the Google Play Store on October 1, 2024.
Malware Dataset. This dataset is intended to evaluate AHA-Fuzz’s
performance on real-world Android malware. Since finding mal-
ware directly from the Google Play Store is challenging, among the
2,230malware samples available in AndroZoo from January 1, 2023
to August 1, 2024, we identify the top 20 most downloaded apps on
the Google Play, which are also uploaded there, as our target apps.
EvaluationBaselines.To evaluate the effectiveness of AHA-Fuzz’s
fuzzing algorithms, we create the following four different baselines
and six variant modes:

(1) APE [36]: It runs only GUI fuzzing. Hence, it does not perform
intent fuzzing. We use APE’s default configurations.

(2) AHA-Fuzz: As a default mode, we use AHA-Fuzz with APE.
(3) AHA-KV: It is a variant version of AHA-Fuzz. It only uses the

key-value feedback (Section 4.2) from AHA-Fuzz’s algorithm.
(4) AHA-CV: It only leverages the coverage (Section 4.3.1) and

key-value feedback (Section 4.2) from AHA-Fuzz’s algorithm.
(5) MATE [6]: It performs GUI fuzzing as well as intent fuzzing

based on intra-procedural static analysis results. We note that
MATE requires modifications of apps to enable the debug mode.

(6) MATE-AHA: It is a variant version of MATE that uses MATE’s
GUI fuzzing and AHA-Fuzz’s intent fuzzing algorithm.

(7) ICCBot: It is an intent fuzzer based on inter-procedural anal-
ysis. We note that Sasnauskas et al. [57] proposed an intent
fuzzing based on inter-procedural static analysis. However the
source code is no longer available. We, thus, implemented inter-
procedural intent fuzzer with ICCBot [65] that leverages key-
value pairs extracted by using inter-procedural static analysis.

(8) ICCBot-AHA: It does not perform the inter-procedural static
analysis. Also, it uses AHA-Fuzz’s intent fuzzing algorithm.

(9) IntentFuzzer [67]: It is an intent fuzzing approach based on
a hybrid method. IntentFuzzer leverages runtime feedback to
obtain the key and intra-procedural static analysis to retrieve
the corresponding value. IntentFuzzer performs fuzzing only on
service and broadcast components. Because it is a closed-source
project, we implemented it based on the paper and adapted it to
an eBPF-based environment to extract key-value pairs.

(10) IntentFuzzer-AHA: It is a variant version of IntentFuzzer that
leverages AHA-Fuzz’s intent fuzzing algorithm.

6.2 Effectiveness of Intent Fuzzing
To answer RQ1 (“Is AHA-Fuzz capable of creating valid intents
called by malware?”), we run AHA-Fuzz and four different fuzzers—
APE, MATE, ICCBot, and IntentFuzzer—on the Ground-truth Mal-
ware Dataset. Table 5 shows the evaluation results. It shows intent
usage patterns per the malware family, along with the time spent
to invoke these patterns and their descriptions. Regarding the pat-
terns, “M” denotes intent events that do not require key-value pairs
in extras, while “E” indicates intent events that require extras. “S”
represents long-term scheduling events.
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1 // ProjectSpyHRX
2 public void onReceive(Context context, Intent intent) {
3 String target = intent.getStringExtra("package");
4 int hashed_target = target.hashCode();
5 if (hashed_target == 7696199939) {
6 target = "com.whatsapp";
7 Do_malicious(target);
8 }
9 }

Figure 6: AHA-Fuzz’s Failure Pattern on ProjectSpyHRX.

We check whether intents generated by the fuzzers invoke the
patterns. We confirm that AHA-Fuzz successfully invokes 27 out of
the 28 patterns. However, APE fails to trigger any patterns when it
performs GUI fuzzing only. MATE, ICCBot, and IntentFuzzer suc-
ceed in triggering patterns that do not require extras values, but fail
to trigger patterns that require scheduling and extras. On the con-
trary, AHA-Fuzz triggers all intent usage patterns and scheduling
events, except for one pattern that requires extras.
Payload. A payload case refers to a scenario where malware lever-
ages the extras field of an intent to deliver a payload. For instance,
Solid malware uses a Google Firebase intent to send a payload
to victims. The malicious behavior is triggered only when the
Firebase message contains a certain key-value payload (status:
StartAdService) within an intent. In our evaluation, all baseline
fuzzers—APE, MATE, ICCBot, and IntentFuzzer—fail to extract the
proper payload triggering a malicious behavior. They use static
analysis to extract values from extras, but fail to identify the spe-
cific payload used by the malware. This is because there are no
predefined patterns or APIs to retrieve values from intents, making
it impossible to generate the correct payload through static analysis
alone. Baseline fuzzers typically extract payload values by collecting
constant values (e.g., predefined strings). However, app hardening
techniques, such as obfuscation, can hinder the extraction of these
payload-related values. On the other hand, AHA-Fuzz successfully
generates the required payload values through the runtime analysis
based on compare operations. Therefore, AHA-Fuzz successfully
invokes four patterns (as in Table 5) that require specific payloads.
SMS. SMS-related intents (e.g., SMS_RECEIVED) require a specific
key-value pair such as {format, 3gpp}. While the baseline fuzzers
notice that the format key is needed, they fail to extract proper
values (e.g., 3gpp). This is because the Android framework, rather
than the application, is responsible for checking the values in in-
tents. Therefore, extracting such proper values requires not only
analyzing the application code but also analyzing the framework
code, which is a challenging problem due to the complexity and of
the framework. On the other hand, AHA-Fuzz monitors all Android
events, including those involving the Android framework. AHA-
Fuzz, thus, can extract the necessary information that format key
requires a value of 3gpp through the key-value feedback.
Time-to-exposure. AHA-Fuzz is approximately three times faster
than previous methods in triggering patterns. We note that sim-
ply invoking an intent event does not directly lead to malware’s
malicious behaviors. The internal state of the malware, including
global variables, also affects the execution of malicious behaviors.
It highlights the importance of selecting the correct intent input.
We observe that our coverage-guided feedback enables AHA-Fuzz
to select input seeds that are likely to trigger malicious behaviors.

Table 6: Ablation Study Results. Improve(%) indicates the perfor-
mance improvement rate compared to the previous mode

Fuzzer # of invoked pattern Avg. TTE (Improve(%))

IntentFuzzer 15 206
AHA-KV 27 146 (41.1%)
AHA-CV 27 124 (17.7%)
AHA-Fuzz 27 66 (87.9%)

In contrast, all other fuzzers randomly select intents, which signifi-
cantly reduces the likelihood of triggering intent events that lead
to malicious behavior.
Failure Case. AHA-Fuzz fails to invoke 1 out of the 28 patterns
in the ProjectSpyHRX malware family. Figure 6 illustrates a failure
case where the malware receives a payload through an intent and
initiates malicious activities by comparing the hash values of the
payload (at Line 5). To pass the hash comparison, the correct pre-
hash value is required. However, AHA-Fuzz’s feedback messages
provide the post-hash value, causing AHA-Fuzz to fail in generating
the appropriate feedback value for the intent parameter. In addition,
generating the pre-hash value is not possible with static analysis,
as it also requires hash guessing.

6.3 Ablation Study
We present an ablation study conducted to assess the contributions
of two types of feedback in AHA-Fuzz—key-value feedback and
selective coverage feedback—to its overall fuzzing performance. To
this end, we compare four fuzzers: IntentFuzzer, which receives
the key values of the extras field as runtime feedback, along with
AHA-Fuzz and its two variant modes—AHA-KV and AHA-CV. We
measure the time spent calling 28 intent usage patterns (as in Sec-
tion 6.2) and the number of invoked usage patterns.

AHA-KV invokes an additional 12 patterns that IntentFuzzer
does not trigger, and its invocation speed improves 41.1%, as shown
in Table 6. This result demonstrates that our key-value feedback
mechanism can generate payloads to invoke new intent usage pat-
terns, thereby reducing the time required to trigger new patterns.
AHA-CV further improves performance over AHA-KV by incorpo-
rating additional coverage feedback, resulting in a 17.7% increase in
call speed compared to AHA-KV. Lastly, AHA-Fuzz achieves a 87.9%
faster call speed compared to AHA-CV, which utilizes non-selective
coverage feedback. The performance improvement of AHA-Fuzz
demonstrates that our selective coverage feedback enhances the
efficiency of intent fuzzing. Our ablation study results demonstrate
that coverage feedback, which measures all Android events, in-
cluding GUI interactions and intents, can negatively impact the
performance of intent fuzzing. In contrast, our selective coverage
feedback focuses exclusively on tracking intent events, effectively
reducing noise from unrelated events and improving fuzzing per-
formance.

6.4 Code Coverage
We measure method-level code coverage (i.e., the number of exe-
cuted methods) to compare AHA-Fuzz with previous works (RQ3).
We note that the input spaces of each baseline fuzzer are different.
Therefore, to ensure a fair comparison, we evaluate code coverage
of each baseline fuzzer and the variant versions of the baselines that
use AHA-Fuzz’s intent fuzzing algorithm (Section 4.2, Section 4.3).
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Table 7: Measured method-level coverage on 40 apps. MATE can only successfully fuzz 11 benign apps out of 20, and 0 malware apps out of 20.

Dataset Triggered Method (Incre.(%))
Ape AHA-Fuzz MATE MATE-AHA ICCBot ICCBot-AHA IntentFuzzer IntentFuzzer-AHA

Benign (20) 6,880 7,734 (12.4%) 4,761 5,363 (12,7%) 6,021 6,979 (15.9%) 6,010 6,804 (13.2%)
Malware (20) 5,110 5,470 (7.0%) Failed Failed 3,006 3,988 (32.6%) 2,360 3,565 (51.0%)

Total (Avg) 5,995.1 6,602.1 (10.1%) 4,760.7 5,363.0 (12.7%) 4,513.7 5,483.3 (21.5%) 4,185.0 5,184.5 (23.9%)

We use a total of 40 Android apps, including the most down-
loaded 20 apps from AndroZoo and the most downloaded 20 mal-
ware. Although we do not intentionally select hardened apps, we
observe that all 40 apps are hardened. Specifically, among the be-
nign apps, 7 out of 20 use obfuscation, and 17 out of 20 employ
anti-debugging techniques. Among the malware, 19 out of 20 apps
use packers. We execute each fuzzer for one hour on each of the 40
Android apps.

As a result, fuzzers that adopt AHA-Fuzz’s intent fuzzing algo-
rithm execute more methods than a baseline fuzzer, as shown in
Table 7. AHA-Fuzz calls 10.1% more methods than GUI fuzzing
(APE), 21.5% more methods than the static analysis-based intent
fuzzer (i.e., ICCBot), and 23.9% more methods than IntentFuzzer.
APE. AHA-Fuzz achieves the highest coverage among all the base-
lines and variant versions using AHA-Fuzz’s intent fuzzing algo-
rithm. Meanwhile, APE (i.e., GUI fuzzing only) achieves the best
method-level coverage compared to other previous intent fuzzing
approaches. This result indicates that GUI events are crucial for
analyzing Android app behaviors, and the inclusion of GUI fuzzing
in the AHA-Fuzz design is reasonable.

In terms of code coverage, APE’s GUI fuzzing significantly en-
hances app analysis. However, from the perspective of malicious
behavior, GUI fuzzing alone cannot trigger certain events, limiting
its effectiveness in comprehensive app analysis as discussed in Sec-
tion 6.2. Therefore, we believe that AHA-Fuzz, when combined with
APE’s GUI fuzzing, performs intent fuzzing that efficiently triggers
a wide range of intent events associated with malicious behaviors.
MATE.We note that MATE’s app-under-test fuzzing strategy re-
quires repackaging the target app. Hence, it is not feasible to analyze
hardened apps with integrity checks. Consequently, MATE fails
to test 29 out of the 40 apps. This result demonstrates that AHA-
Fuzz’s design is effective in analyzing real-world hardened apps.
Also, MATE-AHA (a variant mode of MATE) outperforms MATE’s
intent fuzzing algorithm. This is because MATE randomly gen-
erate intents. On the other hand, AHA-Fuzz’s coverage feedback
algorithm can generate a wide range of effective intents.
ICCBot and IntentFuzzer. The variant modes of ICCBot and In-
tentFuzzer (i.e., ICCBot-AHA and IntentFuzzer-AHA) call more
methods than the original modes, particularly in malware. ICCBot-
AHA triggers 32.6% more methods, and IntentFuzzer-AHA triggers
51.0% more methods. This result is due to the use of packers in
malware. Albeit benign apps are obfuscated, static analysis can
still identify some intent-related operations. We observe developers
apply obfuscation to their main logic code but exclude third-party
code. However, packers used in malware, such as Qihoo [1], pack all
DEX code and unpack it at runtime. As a result, the static analysis
used in ICCBot and IntentFuzzer is ineffective to extract intent-
related information in packed apps. In contrast, AHA-Fuzz extracts

intent-related information at runtime; thus, it is unaffected by pack-
ers and obfuscators and yields better code coverage.

6.5 Discovering Unknown Bugs
We evaluate AHA-Fuzz’s effectiveness in discovering bugs that
previous analysis tools cannot find (RQ4). We run AHA-Fuzz for
one hour on each of the 300 Top downloaded apps. AHA-Fuzz dis-
covers 26 crashes and 21 information leaks, and we report them
to corresponding developers. At the time of writing, four informa-
tion leaks and two crashes have been confirmed. Additionally, two
information leaks have been fixed by Google and Firefox.
Crash. We select ICCBot and IntentFuzzer as comparison fuzzers
and verify the uniqueness of the crashes found by AHA-Fuzz by
checking whether the comparison fuzzer could detect them. We
exclude MATE from the comparison due to the difficulty in per-
forming reliable analysis, as explained in Section 6.4. As in previous
works, we only count crashes that lead to fatal errors (e.g., excluding
crashes caused by null intent fuzzing). To analyze the differences
caused by the intent fuzzing algorithm, we count only the crashes
where the root cause is related to the intent.

AHA-Fuzz discovers 26 crashes that other baseline fuzzers can-
not reach and discover. We note that previous Android fuzzers [6,
36] mainly discover crashes caused by null pointer exceptions.
On the contrary, AHA-Fuzz primarily detects crashes involving
IllegalArgumentException and ClassCastException. AHA-Fuzz
triggers such crashes when the extras field value from AHA-Fuzz is
outside the expected range (IllegalArgumentException), or when
an unexpected type is encountered (ClassCastException), e.g., ex-
pecting JSON but receiving a String.

We observe that the primary reason AHA-Fuzz can discover
unknown bugs lies in the diversity of intent inputs. As the fuzzer
explores deeper code paths, AHA-Fuzz extracts more intent-related
information, regardless of whether apps use hardening techniques.
In contrast, all baseline fuzzers rely on static analysis to mutate
values from extras, resulting in limited input diversity.
Information Leak.We discover 21 information leaks via our light-
weight dynamic taint analysis (as explained in Section 4.4.2). We
identify four information leakage patterns: network information,
authentication code, device ID, and app installation paths, as shown
in Table 8. We note that AHA-Fuzz can detect various information
leaks through method-level taint propagation. In the case of the
21 information leaks AHA-Fuzz found, we confirm that sensitive
information is processed and leaked through the Java standard
library, regardless of the hardening technique (e.g., String.append).

We also confirm that AHA-Fuzz’s intent fuzzing reaches buggy
code (causing information leaks) that previous works cannot. For
instance, regarding network information leak, AndroidX uses a
custom wrapper class for Log. During execution, the custom Log
class is initialized in release mode, which sanitizes debug logs. Yet,
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Table 8: 47 Previously Unknown Bugs Discovered by AHA-Fuzz.
Oracle Bug pattern Package Number

Crash IllegalArgumentException Gmail + 13 more 14
Crash ClassCastException Google Home + 7 more 8
Crash NullPointerException Roblox + 4 more 4
Leak Network Android-sdk + 5 more 6
Leak Authentication code Android-sdk 1
Leak Device id Facebook 1
Leak App installation path Firefox + 12 more 13

AHA-Fuzz calls the uninitialized custom Log class, causing it to
be initialized in debug mode. In the debug mode of their custom
Log, network capabilities are logged, which require permissions
(e.g., ACCESS_NETWORK_STATE) to access. We also confirmed that the
Facebook device ID leak and Firebase authentication code leak also
occur only through the intent event.

To verify that the information leaks we discover are unique bugs
that other tools cannot find, we first attempt to use dynamic taint
analysis tools but is unsuccessful. System modification-based taint
analysis tools [18, 59, 62, 66] only support versions up to Android
6, while most of the apps we test (98%) require Android 8 or higher
versions. Other dynamic taint analysis tools [3, 64], including DBI,
require manual configuration to set exact source and sink points,
which makes them unsuitable for discovering new information
leaks. Thus, we use FlowDroid [5], a popular static taint analysis
tool, to verify whether it detects any of the 21 bugs. We confirm that
FlowDroid cannot detect any of these bugs due to app hardening
techniques that reduce the accuracy of static analysis.

For instance, AHA-Fuzz detects a device ID leak in the Facebook
app, triggered by a GET_PHONE_ID intent generated by AHA-Fuzz.
This leaked device ID enables user identification, which leads to a
privacy leakage that enables cross-app tracking [74] and unautho-
rized user profiling [17]. Existing taint analysis approaches, such
as FlowDroid [5] and Vialin [3], fail to detect the issue because
the component is currently fully hardened. More specifically, the
buggy code is located in a dynamically loaded module, which is
invisible to static analysis (FlowDroid) or fails to instrument the
app code (Vialin). In contrast, AHA-Fuzz successfully detects this
bug by leveraging method-level taint propagation, and this bug is
fixed by Facebook.
Bug Report. Since Android apps on Google Play are closed-source,
direct communication with developers for bug confirmation is not
feasible. Among the 46 apps in which AHA-Fuzz identified bugs,
only Google, Facebook, and Firefox allow users to report bugs in
public security bug reporting platforms. They acknowledge four
information leaks and two crashes and fix three information leaks.

7 Discussion
Testing Real Devices. Research literature [57, 62] recommends
fuzzing on real Android devices rather than testing the inputs on
Android emulators due to the anti-analysis problems. We note that
users can run AHA-Fuzz on real Android devices with root permis-
sions since AHA-Fuzz leverages a dynamic analysis environment
based on eBPF. Yet, we evaluate AHA-Fuzz on emulators rather
than the real devices. The main reason is that our evaluation tests
more than 300 different Android apps with ten different modes;
thus, testing with real devices is impractical to evaluate all sets.

Requiring Root Permissions. AHA-Fuzz leverages an eBPF-
based dynamic analysis environment. To activate eBPF kernel sub-
system, it requires root permissions. Yet, it is worth noting that
Android rooting can be easily accomplished on Android emulators
(e.g., using “adb root” command [29]). Further, certain Android
malware exclusively functions on rooted Android [51]. Thus, we
believe that the rooted Android environment is not a significant
limitation and can be beneficial for analyzing Android malware.
Information leak detection coverage. Sensitive information is
generally stored and managed as primitive or String types, and
AHA-Fuzz is capable of detecting information leaks involving these
types. However, when the data is stored in other types or trans-
formed [15] (e.g., via encoding or encryption), AHA-Fuzz is unable
to detect the associated information leaks. These information leaks
can be detected by introducing new automatic approaches for iden-
tifying related APIs, or by manually specifying them as additional
tracking targets.

8 Future work
Special Type Mutation. AHA-Fuzz currently faces limitations
in mutating special types (e.g., Binder or Serializable) because
the object layouts of such types differ across apps. Although our
analysis in Table 4 (Section 4.2.2) shows that only 6.5% of the extras
in tested apps involve special types, as our future work, we plan to
extend AHA-Fuzz to support special type mutation by recovering
the layout of these special type objects based on our Java object
layout recovery techniques (Section 4.2.1).
BugAnalysis.AHA-Fuzz currently supports detecting two types of
bugs, crashes and information leaks, but it faces challenges when an-
alyzing identified bugs (e.g., root cause analysis). While AHA-Fuzz
records all framework API calls to trace which APIs are invoked
by buggy code, conducting in-depth analyses such as root cause
investigation or patch generation remains difficult. In future work,
we plan to enhance AHA-Fuzz with the capabilities to effectively
analyze bugs in hardened apps, such as reconstructing backtraces
that are resistant to hardening techniques.
Cross-platform Framework App Support. Recently, many apps
have been developed using new cross-platform frameworks (e.g., Flut-
ter [23], Xamarin [48], and React Native [53]). Consequently, there
is a growing need for analysis tools tailored to these frameworks.
Since AHA-Fuzz is based on eBPF and does not heavily depend
on specific cross-platform frameworks at runtime, we plan to ex-
tend AHA-Fuzz testing scope to newly emerging cross-platform
framework apps as our future work.

9 Related Work
Fuzzing. Prior fuzzing works for Android apps attempt to max-
imize code coverage similar to AHA-Fuzz [6, 36, 57, 58, 70], but
they deal with GUI fuzzing and simple intents. APE [36] is an auto-
mated model-based GUI testing technique that dynamically refines
GUI models to improve code coverage and crash detection. This
approach does not focus on the generation of intents. Stoat [58] is a
model-based testing approach by generating stochastic models that
describe GUI interactions. It constructs models dynamically and
iteratively mutates them to generate diverse test cases, while also in-
jecting system-level events, including broadcast intents, to uncover
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intricate bugs. Yet, it is limited to sending Manifest-defined system
broadcast intents without intent-related feedback (e.g., action and
extras fields). Furthermore, Auer et al. [6] suggest that combining
UI inputs with intents triggers higher code coverage than sending
either alone. Their empirical study identified a specific ratio that
yielded the best results, but considering the unique combination
for each app, as in our approach, allows for more efficient fuzzing.
Intent fuzzing tools [6, 13, 38, 40, 46, 57, 67] focus on generating
appropriate extras (i.e., key-value pairs) to maximize code cover-
age. However, these methods rely on static analysis, making them
ineffective against obfuscation techniques. DroidFuzzer [70] and
Sasnauskas et al. [57] propose testing approaches sending intents
to components of target apps. Yet, these works only treat activity
intent and its simple usage (e.g., null value and predefined constant).
Dynamic Analysis for Android Security. Many frameworks
attempt to detect security threats (e.g., information leak, privilege
escalation) in Android apps by tracing code executions on dynamic
instrumentation tools [60, 62, 64, 66, 73]. They reconstruct or track
data flows to figure out the behaviors of the apps by modifying
Android systems and emulators, or by using DBI [60, 62, 64, 66].
Yet, these works require Android system modification or incur high
overhead; thus, users also need to update their frameworks with
each system version update (i.e., Android version update) or face
high runtime overhead. To fill this gap, our approach does not need
system modifications by leveraging eBPF. This is because it uses
kernel subsystemwith support fromAndroid OS [22]. NCScope [73]
also uses eBPF programs to retrieve the in-memory data. However,
it only covers native code execution and requires specific hardware
(ARM ETM) to trace CPU-level instructions.

10 Conclusion
We introduce AHA-Fuzz, the first intent-aware greybox fuzzing
framework for hardened Android apps. AHA-Fuzz has three key as-
pects that distinguish it from previous works: (𝑖) introducing a valid
intent generator by recovering object layouts and leveraging key-
value feedback to create valid intent inputs, (𝑖𝑖) precisely evaluating
the impact of these generated inputs using a selective coverage
feedback approach, and (𝑖𝑖𝑖) introducing approaches for efficiently
triggering hard-to-trigger bugs and detecting information leaks
in hardened app. Our evaluation results show that AHA-Fuzz is
effective in triggering actions that previous works cannot reach.
Especially, compared to previous works, AHA-Fuzz triggers 92.3%
more intents (3.45× faster) and 23.9% more methods. AHA-Fuzz
also discovers 47 previously unknown bugs that previous works
cannot find. Among the 47 bugs found, 6 have been acknowledged
by developers from Google, Firefox, and Facebook, and three have
been fixed. The open-source version of AHA-Fuzz is available at
https://github.com/S2-Lab/AHA-fuzz.
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