
DryJIN: Detecting Information
Leaks in Android Applications

Minseong Choi1, Yubin Im2, Steve Ko3, Yonghwi Kwon4, Yuseok Jeon1, Haehyun Cho2

1 UNIST, 2 Soongsil University, 3 Simon Fraser University, 4 University of Maryland

39th International Conference on ICT Systems Security and Privacy Protection

Minseong Choi
E-mail : liberty@unist.ac.kr

Yubin Im
E-mail : th8548@soongsil.ac.kr

Steve Ko
E-mail : steveyko@sfu.ca

Yonghwi Kwon
E-mail : yongkwon@umd.edu

Yuseok Jeon
E-mail : ysjeon@unist.ac.kr 1

Haehyun Cho
E-mail : haehyun@ssu.ac.kr

2

3

Attacker’s Intention

Developer’s Fault

4

Attacker’s Intention

Developer’s Fault

Information leaks in Android are a common issue.

5

Attacker’s Intention

Developer’s Fault

6

 Path reachability problem of a specific data.

Application Process

var = call source_API();

call sink_API(var);

…

7

 Path reachability problem of a specific data.

 Identifying APIs to read sensitive information (i.e., source) and write out of an app (i.e., sink).

Application Process

var = call source_API();

call sink_API(var);

…

8

 Path reachability problem of a specific data.

 Identifying APIs to read sensitive information (i.e., source) and write out of an app (i.e., sink).

 Taint analysis traces data flows between them.

Application Process

var = call source_API();

call sink_API(var);

…

9

 Native library is compiled codes by using C/C++.

10

 Native library is compiled codes by using C/C++.

Java World

var = call source_API();

call sink_API(arg1);

…

call native_method(var);

Native World

void native_method(arg1) {

…

Application Process

11

Java World

var = call source_API();

call sink_API(arg1);

…

call native_method(var);

Native World

void native_method(arg1) {

…

Application Process

Blinded

 Native library is compiled codes by using C/C++.

12

Java World

var = call source_API();

call sink_API(arg1);

…

call native_method(var);

Native World

void native_method(arg1) {

…

Application Process

 Native library is compiled codes by using C/C++.

Malware

84.3%

15.7%

 Native library is compiled codes by using C/C++.

 It takes a large portion (84.3%) in malware market

13

Malware Benign-ware

84.3%

15.7%

53.8%

62.8%

74.1%

2020 2021 2022

 Native library is compiled codes by using C/C++.

 It takes a large portion (84.3%) in malware market and is growing in benign-ware.

14

F6F5F4F3F2F1Flow Type [1]

source

sinkJava

Native

JNI

15[1] Xue, Lei, et al. "NDroid: Toward tracking information flows across multiple Android contexts." IEEE Transactions on Information Forensics and Security 14.3 (2018): 814-828.

F6F5F4F3F2F1Flow Type [1]

source

sinkJava

Native

JNI

16[1] Xue, Lei, et al. "NDroid: Toward tracking information flows across multiple Android contexts." IEEE Transactions on Information Forensics and Security 14.3 (2018): 814-828.

F6F5F4F3F2F1Flow Type [1]

source

sinkJava

Native

JNI

17[1] Xue, Lei, et al. "NDroid: Toward tracking information flows across multiple Android contexts." IEEE Transactions on Information Forensics and Security 14.3 (2018): 814-828.

 FlowDroid (PLDI '14): IFDS-based taint analyzer on java code.

18

F6F5F4F3F2F1Approach

FlowDroid

 FlowDroid (PLDI '14): IFDS-based taint analyzer on java code.

 Argus-SAF (CCS '18): Summary-based taint analyzer on java code and native code.

- Missing for native source APIs.

- Capturing data flow in native code only the invocation of the source or sink java API.

19

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

 FlowDroid (PLDI '14): IFDS-based taint analyzer on java code.

 Argus-SAF (CCS '18): Summary-based taint analyzer on java code and native code.

- Missing for native source APIs.

- Capturing data flow in native code only the invocation of the source or sink java API.

 JuCify (ICSE ‘22): Adapting native code into FlowDroid by translation.

- Missing for native source and sink APIs.

- Overlooking problem due to opaque argument permutation.

20

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

JuCify

source

sinkJava

Native

JNI

21

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

JuCify

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

JuCify

DryJIN

source

sinkJava

Native

JNI

22

Native Method Resolver

APK

23

Native Code Abstractor

Java Analyzer

Native Method Resolver

APK

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

24

 Find native methods and its address

within a native library.

Native Code Abstractor

Java Analyzer

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

25

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

26

Prefix Class Name Method Name

- Parse function symbols.

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

27

Prefix Class Name Method Name

- Parse function symbols.

Method Signature Function Address

- Find an argument of JNI Function.
- Parse { method : address } map by the argument.

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

28

Prefix Class Name Method Name

- Parse function symbols.

Method Signature Function Address

- Find an argument of JNI Function.

- Parse { method : address } map by the argument.

- Find pre-defined function (e.g., ‘android_main’)
- Parse engine struct.

Native Method Resolver

Native Code Abstractor

APK

Source/Sink

Native API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

29

 Analyze each native method from the address

Java Analyzer

Native Method Resolver

Native Code Abstractor

APK

Source/Sink

Native API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

30

 Analyze each native method from the address

 Transform to IR being used for Java Analysis

 Record an invocation of ICC

Java Analyzer

Native Method Resolver

Data Flow Analysis

Code Translation

Native Code Abstractor

Java Analyzer

31

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Source/Sink

Native API List

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Native Method Resolver

Data Flow Analysis

Code Translation

Native Code Abstractor

Java Analyzer

32

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Source/Sink

Native API List

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Symbolic Variable

Argument & Return
Invocation:

JNI Function, Native API

Annotation

Abstraction process for each native method

Native Method Resolver

Data Flow Analysis

Code Translation

Native Code Abstractor

Java Analyzer

33

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Source/Sink

Native API List

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Jimple Statement

Symbolic Variable

Argument & Return
Invocation:

JNI Function, Native API

Annotation

ICC Link

Translation

Abstraction process for each native method

Native Method Resolver

Native Code Abstractor

Java Analyzer

APK

Source/Sink

Native API List

Source/Sink

Java API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

34

 Load IR and ICC Links of native modules

Native Method Resolver

Native Code Abstractor

Java Analyzer

APK

Source/Sink

Native API List

Source/Sink

Java API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Analysis Report

Found
48 leaks

35

 Load IR and ICC Links of native modules

 Perform a holistic taint analysis

Native Method Resolver

Jimple IR & ICC Link Loader

Data Flow Analysis

Java Analyzer

Native Code Abstractor

36

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Source/Sink

Java API List

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Analysis Report

Found
48 leaks

 RQ 1. How does DryJIN perform on benchmark test suites?

 RQ 2. Can DryJIN be used for analyzing real-world apps?

 RQ 3. When and why did DryJIN encounter difficulties in analyzing apps?

 Comparison Tools: Argus-SAF, JuCify

37

38

 Additional benchmarks to handle native flows completely.

39

DryJINJuCifyArgus-SAFTest Suites

Recall (%)Precision (%)Recall (%)Precision (%)Recall (%)Precision (%)LeaksBenchmarksCategory

10010011.81001001002023Argus-SAF

10010010081.80100911JuCify

100100401002010055DroidBench

10010016.71008.31001212DryJIN

10010042.195.532.11004651Total

 Additional benchmarks to handle native flows completely.

 Other tools: effective results only for its own benchmark.

40

DryJINJuCifyArgus-SAFTest Suites

Recall (%)Precision (%)Recall (%)Precision (%)Recall (%)Precision (%)LeaksBenchmarksCategory

10010011.81001001002023Argus-SAF

10010010081.80100911JuCify

100100401002010055DroidBench

10010016.71008.31001212DryJIN

10010042.195.532.11004651Total

 Additional benchmarks to handle native flows completely.

 Other tools: effective results only for its own benchmark.

 DryJIN: outperformed results for all benchmarks.

41

Benign-wareMalware
DryJIN

2022202120222021

12,07352,48154,25450,480# of Apps Used

3,2057,9474,6353,865
of Detected Apps

Leaking Information

5349485(Java > Native) F1 Leak

0064(Java > Java) F2 Leak

1052(Native > Java) F3 Leak

0000(Native > Native) F4 Leak

3,1987,9054,5123,763(Java > Java) F5 Leak

18149(Native > Native) F6 Leak

 DryJIN: 268 leak cases in the wild

without java-only leak (i.e., F5).

F6F5F4F3F2F1Flow Type

source

sinkJava

Native

JNI

42

 JuCify: 2 leak cases as java-to-java

leak through native flow (i.e, F2).

 Argus-SAF: misses for all cases.

Benign-wareMalware

2022202120222021

74210692# of Apps Used

Argus-SAF

0000F1 Leak

0000F2 Leak

0000F3 Leak

0000F4 Leak

0000F5 Leak

0000F6 Leak

JuCify

0000F1 Leak

0020F2 Leak

0000F3 Leak

0000F4 Leak

0000F5 Leak

0000F6 Leak

 Loading a native library: ‘libgoogleapi.so’.

43

 Loading a native library: ‘libgoogleapi.so’.

 Calling a native method after launching the app.

44

 Loading a native library: ‘libgoogleapi.so’.

 Calling a native method after launching the app.

 Invoking a java source API to obtain IMEI.

Source (Java):
Call java method

45

 Loading a native library: ‘libgoogleapi.so’.

 Calling a native method after launching the app.

 Invoking a java source API to obtain IMEI.

 Starting a thread to log and send it.

Sink (native):
Log print

C&C write

46

Source (Java):
Call java method

47

Native Method Resolver Native Code Abstractor Java Analyzer

- Loading a native library
- Finding a native method

- Path explosion
- Internal error of symbolic

execution engine

- Loading a DEX code
- Generating a java call graph

 Privacy leaks in Android are common.

 Current solutions lack data flow tracking in native modules.

 Comprehensive information flow tracing with native APIs in Android.

 Successfully detect 268 real-world information leaks.

 Planing to Address further challenges by modeling well-known native libraries.

48

39th International Conference on ICT Systems Security and Privacy Protection

Thank you

49
Minseong Choi
E-mail : liberty@unist.ac.kr

Yubin Im
E-mail : th8548@soongsil.ac.kr

Steve Ko
E-mail : steveyko@sfu.ca

Yonghwi Kwon
E-mail : yongkwon@umd.edu

Yuseok Jeon
E-mail : ysjeon@unist.ac.kr

Haehyun Cho
E-mail : haehyun@ssu.ac.kr

DryJIN GitHub Repository

[Open Source]

(Publicly available soon!)https://github.com/ssu-csec/DryJIN

