
DryJIN: Detecting Information
Leaks in Android Applications

Minseong Choi1, Yubin Im2, Steve Ko3, Yonghwi Kwon4, Yuseok Jeon1, Haehyun Cho2

1 UNIST, 2 Soongsil University, 3 Simon Fraser University, 4 University of Maryland

39th International Conference on ICT Systems Security and Privacy Protection

Minseong Choi
E-mail : liberty@unist.ac.kr

Yubin Im
E-mail : th8548@soongsil.ac.kr

Steve Ko
E-mail : steveyko@sfu.ca

Yonghwi Kwon
E-mail : yongkwon@umd.edu

Yuseok Jeon
E-mail : ysjeon@unist.ac.kr 1

Haehyun Cho
E-mail : haehyun@ssu.ac.kr

2

3

Attacker’s Intention

Developer’s Fault

4

Attacker’s Intention

Developer’s Fault

Information leaks in Android are a common issue.

5

Attacker’s Intention

Developer’s Fault

6

 Path reachability problem of a specific data.

Application Process

var = call source_API();

call sink_API(var);

…

7

 Path reachability problem of a specific data.

 Identifying APIs to read sensitive information (i.e., source) and write out of an app (i.e., sink).

Application Process

var = call source_API();

call sink_API(var);

…

8

 Path reachability problem of a specific data.

 Identifying APIs to read sensitive information (i.e., source) and write out of an app (i.e., sink).

 Taint analysis traces data flows between them.

Application Process

var = call source_API();

call sink_API(var);

…

9

 Native library is compiled codes by using C/C++.

10

 Native library is compiled codes by using C/C++.

Java World

var = call source_API();

call sink_API(arg1);

…

call native_method(var);

Native World

void native_method(arg1) {

…

Application Process

11

Java World

var = call source_API();

call sink_API(arg1);

…

call native_method(var);

Native World

void native_method(arg1) {

…

Application Process

Blinded

 Native library is compiled codes by using C/C++.

12

Java World

var = call source_API();

call sink_API(arg1);

…

call native_method(var);

Native World

void native_method(arg1) {

…

Application Process

 Native library is compiled codes by using C/C++.

Malware

84.3%

15.7%

 Native library is compiled codes by using C/C++.

 It takes a large portion (84.3%) in malware market

13

Malware Benign-ware

84.3%

15.7%

53.8%

62.8%

74.1%

2020 2021 2022

 Native library is compiled codes by using C/C++.

 It takes a large portion (84.3%) in malware market and is growing in benign-ware.

14

F6F5F4F3F2F1Flow Type [1]

source

sinkJava

Native

JNI

15[1] Xue, Lei, et al. "NDroid: Toward tracking information flows across multiple Android contexts." IEEE Transactions on Information Forensics and Security 14.3 (2018): 814-828.

F6F5F4F3F2F1Flow Type [1]

source

sinkJava

Native

JNI

16[1] Xue, Lei, et al. "NDroid: Toward tracking information flows across multiple Android contexts." IEEE Transactions on Information Forensics and Security 14.3 (2018): 814-828.

F6F5F4F3F2F1Flow Type [1]

source

sinkJava

Native

JNI

17[1] Xue, Lei, et al. "NDroid: Toward tracking information flows across multiple Android contexts." IEEE Transactions on Information Forensics and Security 14.3 (2018): 814-828.

 FlowDroid (PLDI '14): IFDS-based taint analyzer on java code.

18

F6F5F4F3F2F1Approach

FlowDroid

 FlowDroid (PLDI '14): IFDS-based taint analyzer on java code.

 Argus-SAF (CCS '18): Summary-based taint analyzer on java code and native code.

- Missing for native source APIs.

- Capturing data flow in native code only the invocation of the source or sink java API.

19

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

 FlowDroid (PLDI '14): IFDS-based taint analyzer on java code.

 Argus-SAF (CCS '18): Summary-based taint analyzer on java code and native code.

- Missing for native source APIs.

- Capturing data flow in native code only the invocation of the source or sink java API.

 JuCify (ICSE ‘22): Adapting native code into FlowDroid by translation.

- Missing for native source and sink APIs.

- Overlooking problem due to opaque argument permutation.

20

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

JuCify

source

sinkJava

Native

JNI

21

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

JuCify

F6F5F4F3F2F1Approach

FlowDroid

Argus-SAF

JuCify

DryJIN

source

sinkJava

Native

JNI

22

Native Method Resolver

APK

23

Native Code Abstractor

Java Analyzer

Native Method Resolver

APK

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

24

 Find native methods and its address

within a native library.

Native Code Abstractor

Java Analyzer

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

25

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

26

Prefix Class Name Method Name

- Parse function symbols.

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

27

Prefix Class Name Method Name

- Parse function symbols.

Method Signature Function Address

- Find an argument of JNI Function.
- Parse { method : address } map by the argument.

Native Method Resolver

Naming Convention
(Static Registration)

Dynamic Registration

Native Activity & Callback

APK

Native Code Abstractor

Java Analyzer

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

28

Prefix Class Name Method Name

- Parse function symbols.

Method Signature Function Address

- Find an argument of JNI Function.

- Parse { method : address } map by the argument.

- Find pre-defined function (e.g., ‘android_main’)
- Parse engine struct.

Native Method Resolver

Native Code Abstractor

APK

Source/Sink

Native API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

29

 Analyze each native method from the address

Java Analyzer

Native Method Resolver

Native Code Abstractor

APK

Source/Sink

Native API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

30

 Analyze each native method from the address

 Transform to IR being used for Java Analysis

 Record an invocation of ICC

Java Analyzer

Native Method Resolver

Data Flow Analysis

Code Translation

Native Code Abstractor

Java Analyzer

31

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Source/Sink

Native API List

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Native Method Resolver

Data Flow Analysis

Code Translation

Native Code Abstractor

Java Analyzer

32

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Source/Sink

Native API List

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Symbolic Variable

Argument & Return
Invocation:

JNI Function, Native API

Annotation

Abstraction process for each native method

Native Method Resolver

Data Flow Analysis

Code Translation

Native Code Abstractor

Java Analyzer

33

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Source/Sink

Native API List

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Jimple Statement

Symbolic Variable

Argument & Return
Invocation:

JNI Function, Native API

Annotation

ICC Link

Translation

Abstraction process for each native method

Native Method Resolver

Native Code Abstractor

Java Analyzer

APK

Source/Sink

Native API List

Source/Sink

Java API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

34

 Load IR and ICC Links of native modules

Native Method Resolver

Native Code Abstractor

Java Analyzer

APK

Source/Sink

Native API List

Source/Sink

Java API List

Native Method Map

foo:
0x4ae00d0

sender:
0x4af02e0

leaker:
0x4b00120

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Analysis Report

Found
48 leaks

35

 Load IR and ICC Links of native modules

 Perform a holistic taint analysis

Native Method Resolver

Jimple IR & ICC Link Loader

Data Flow Analysis

Java Analyzer

Native Code Abstractor

36

Jimple Statements,

ICC Links

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Source/Sink

Java API List

$0 = $arg0
$1= $arg1
$2 = call \
jmethod($0)

…

Analysis Report

Found
48 leaks

 RQ 1. How does DryJIN perform on benchmark test suites?

 RQ 2. Can DryJIN be used for analyzing real-world apps?

 RQ 3. When and why did DryJIN encounter difficulties in analyzing apps?

 Comparison Tools: Argus-SAF, JuCify

37

38

 Additional benchmarks to handle native flows completely.

39

DryJINJuCifyArgus-SAFTest Suites

Recall (%)Precision (%)Recall (%)Precision (%)Recall (%)Precision (%)LeaksBenchmarksCategory

10010011.81001001002023Argus-SAF

10010010081.80100911JuCify

100100401002010055DroidBench

10010016.71008.31001212DryJIN

10010042.195.532.11004651Total

 Additional benchmarks to handle native flows completely.

 Other tools: effective results only for its own benchmark.

40

DryJINJuCifyArgus-SAFTest Suites

Recall (%)Precision (%)Recall (%)Precision (%)Recall (%)Precision (%)LeaksBenchmarksCategory

10010011.81001001002023Argus-SAF

10010010081.80100911JuCify

100100401002010055DroidBench

10010016.71008.31001212DryJIN

10010042.195.532.11004651Total

 Additional benchmarks to handle native flows completely.

 Other tools: effective results only for its own benchmark.

 DryJIN: outperformed results for all benchmarks.

41

Benign-wareMalware
DryJIN

2022202120222021

12,07352,48154,25450,480# of Apps Used

3,2057,9474,6353,865
of Detected Apps

Leaking Information

5349485(Java > Native) F1 Leak

0064(Java > Java) F2 Leak

1052(Native > Java) F3 Leak

0000(Native > Native) F4 Leak

3,1987,9054,5123,763(Java > Java) F5 Leak

18149(Native > Native) F6 Leak

 DryJIN: 268 leak cases in the wild

without java-only leak (i.e., F5).

F6F5F4F3F2F1Flow Type

source

sinkJava

Native

JNI

42

 JuCify: 2 leak cases as java-to-java

leak through native flow (i.e, F2).

 Argus-SAF: misses for all cases.

Benign-wareMalware

2022202120222021

74210692# of Apps Used

Argus-SAF

0000F1 Leak

0000F2 Leak

0000F3 Leak

0000F4 Leak

0000F5 Leak

0000F6 Leak

JuCify

0000F1 Leak

0020F2 Leak

0000F3 Leak

0000F4 Leak

0000F5 Leak

0000F6 Leak

 Loading a native library: ‘libgoogleapi.so’.

43

 Loading a native library: ‘libgoogleapi.so’.

 Calling a native method after launching the app.

44

 Loading a native library: ‘libgoogleapi.so’.

 Calling a native method after launching the app.

 Invoking a java source API to obtain IMEI.

Source (Java):
Call java method

45

 Loading a native library: ‘libgoogleapi.so’.

 Calling a native method after launching the app.

 Invoking a java source API to obtain IMEI.

 Starting a thread to log and send it.

Sink (native):
Log print

C&C write

46

Source (Java):
Call java method

47

Native Method Resolver Native Code Abstractor Java Analyzer

- Loading a native library
- Finding a native method

- Path explosion
- Internal error of symbolic

execution engine

- Loading a DEX code
- Generating a java call graph

 Privacy leaks in Android are common.

 Current solutions lack data flow tracking in native modules.

 Comprehensive information flow tracing with native APIs in Android.

 Successfully detect 268 real-world information leaks.

 Planing to Address further challenges by modeling well-known native libraries.

48

39th International Conference on ICT Systems Security and Privacy Protection

Thank you

49
Minseong Choi
E-mail : liberty@unist.ac.kr

Yubin Im
E-mail : th8548@soongsil.ac.kr

Steve Ko
E-mail : steveyko@sfu.ca

Yonghwi Kwon
E-mail : yongkwon@umd.edu

Yuseok Jeon
E-mail : ysjeon@unist.ac.kr

Haehyun Cho
E-mail : haehyun@ssu.ac.kr

DryJIN GitHub Repository

[Open Source]

(Publicly available soon!)https://github.com/ssu-csec/DryJIN

