
ERASan : Efficient Rust
Address Sanitizer

Jiun Min＊¹, Dongyeon Yu＊¹, Seongyun Jeong¹, Dokyung Song², Yuseok Jeon¹

1UNIST 2 Yonsei University

45th IEEE Symposium on Security and Privacy

＊ Equal Contribution

Jiun Min
E-mail : min1905@unist.ac.kr

Dongyeon Yu
E-mail : dy3199@unist.ac.kr

Seongyun Jeong
E-mail : dy3199@unist.ac.kr

Dokyung Song
E-mail : dokyungs@yonsei.ac.kr

Yuseok Jeon
E-mail : ysjeon@unist.ac.kr 1

 RUST is designed to guarantee memory safety by leveraging the four main safety rules.

Ownership

Borrow Check

Lifetime
Inference

Bound Check

Memory Safety

2

Unsafe {

}

 Unsafe RUST can not guarantee memory safety to bypass safety rules.

Ownership

Borrow Check

Lifetime
Inference

Bound Check

Bypassing RUST safety rules

Can not guarantee
Memory Safety

3

Unsafe {

}

 Over the seven years, 581 reported bugs have been detected in the RUST program.

0

20

40

60

80

100

120

140

160

180

Reported Bugs

2016 2017 2018 2019 2020 2021 2022 2023

158

6 8

26

42

167

93

81

581 Report

4

Unsafe {

}

 Over the seven years, 581 reported bugs have been detected in the RUST program.

0

20

40

60

80

100

120

140

160

180

Reported Vulnerability

2016 2017 2018 2019 2020 2021 2022 2023

158

6 8

26

42

167

93

81

581 Report

5

We should detect bugs caused by using Unsafe RUST.

✓ unsafe memory access

Object

 Address Sanitizer can detect memory safety violation such as UAF and Buffer Overflow.

Address Sanitizer
: Detect memory safety violations

Unsafe {

}

6

RedzoneRedzone

00
11

00
11 Inserts poisoned Redzone around objects.

Instrumentation

 Instrument all memory access to check validity.

 However, it generates significant runtime overhead.
Runtime Overhead

 It incurs about 334% overhead on RUST program.

✓ unsafe memory access

Object

 Address Sanitizer can detect memory safety violation such as UAF and Buffer Overflow.

Address Sanitizer
: Detect memory safety violations

Unsafe {

}

7

RedzoneRedzone

00
11

00
11 Inserts poisoned Redzone around objects.

Instrumentation

 Instrument all memory access to check validity.

 However, it generates significant runtime overhead.
Runtime Overhead

Should we apply the Address Sanitizer
to all RUST source codes?

8

RUST Source Code

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

Memory
Safety
Code

Memory
Unsafe

Code

 Address Sanitizer is used to detect temporal and spatial memory violation bugs in RUST.

✓memory access

RUST Source Code

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

Memory
Safety
Code

Memory
Unsafe

Code

9

 For detecting memory bugs, Address Sanitizer instruments all memory accesses.

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check ASan Check

ASan Check

ASan Check

ASan Check

ASan Check✓memory access

RUST Source Code

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

Memory
Safety
Code

Memory
Unsafe

Code

1
0

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check ASan Check

ASan Check

ASan Check

ASan Check

 Address Sanitizer in RUST instruments all memory accesses regarding RUST safety rules.

ASan Check✓memory access

RUST Source Code

✓memory access

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

Memory
Safety
Code

Memory
Unsafe

Code

1
1

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check ASan Check

ASan Check

ASan Check

ASan Check

Protection of RUST Safety Rules

 Address Sanitizer performs redundant and unnecessary memory access checks.

RUST Source Code

✓memory access

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

Memory
Safety
Code

Memory
Unsafe

Code

1
2

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check

ASan Check ASan Check

ASan Check

ASan Check

ASan Check

Protection of RUST Safety Rules

 Address Sanitizer performs redundant and unnecessary memory access checks.

To reduce this unnecessary overhead,
we survey when Rust memory bugs occurs.

Double-Free (26)

Memory Safety Violation (131) Other (450)

0 131 581

Memory
Bugs

Double-Free (26)

Buffer-Overflow (61)

Use-After-Free (44)

Memory Bug in RUST

 Analyze the 581 Rust bug reports in the RustSec Advisory Database over seven years.

13

Raw Pointer

Pointers Aliased
to Raw Pointer

Key Finding

Temporal and Spatial Memory Safety Violation
Bugs can be triggered by Raw Pointer.

The safe pointer that pointer aliased to raw pointer
can trigger Temporal Memory Safety Violation Bugs.

Raw Pointer

and

Alias pointer with
raw pointer

14

Instrumentation

Raw Pointer
Annotation

1
Identifying Unsafe

Memory Access Sites
2 Selective ASan

Instrumentation
3

ERASAN
Check

15

!Raw Ptr

!Raw Ptr

✓

✓

✓

✓

MIR LLVM-IR

Allocation
Site

Allocation
Site

Drop
Function

Stack
Scope

Safe
memory access

Safe
memory access

Unsafe
memory access

Unsafe
memory access

Unsafe
memory access

Safe
memory access

 Raw Pointer information is unique type existing during RUST compilation step until MIR.

Raw Pointer Information does not
exist in LLVM-IR.

16

(Raw Pointer)

(Raw Pointer)

MIR LLVM-IR

Raw Pointer
Annotation1

(Raw Pointer)

(Raw Pointer)

MIR LLVM-IR

 Raw Pointer information is a unique type existing during the RUST compilation step until MIR.

✓

✓

✓

✓

✓

Add annotation to instruction,
including raw pointer

!rawptr

!rawptr

Raw Pointer Annotation

 ERASAN annotates to llvm instructions related to the raw pointer.

17

Raw Pointer
Annotation1

Pointers aliased
to raw pointerAllocation Sites

pointed by raw pointers

Raw Pointer

Allocation
Site

Allocation
Site

Allocation
Site

Allocation
Site X

X

 ERASAN identifies all the memory allocation sites that can be pointed to by raw pointers.

18

Identifying Unsafe
Memory Access2

19

 Memory access by a safe pointer (e.g., reference) ensured no spatial memory safety violation.

Raw Pointer

Allocated
Memory

Invalid
Memory

Invalid
Memory

Causing spatial memory bug

No bound checkNo bound check

 Memory access by a raw pointer causes a spatial memory bug.

Safe Pointer

Allocated
Memory

Invalid
Memory

Invalid
Memory

Bound CheckBound Check

Prevent spatial memory bug

Identifying Unsafe
Memory Access2

20

Identifying Unsafe
Memory Access2

 ERASAN instrument to raw pointer access to prevent buffer overflow.

Allocated Memory Invalid MemoryInvalid Memory

Raw Pointer Safe Pointer Raw Pointer Safe Pointer Raw Pointer Safe Pointer

Buffer
Overflow

ERASAN Instrumentation

X XBuffer
Overflow

 Memory access by a safe pointer (e.g., reference) ensured no temporal memory safety violation.

21

Reference

Alias

Allocated Memory Allocated MemoryFreed MemoryFreed Memory

Reference

Lifetime CheckLifetime Check

Prevent temporal memory bug

Raw Pointer

Causing temporal memory bug

 The pointer aliased to raw pointer can be exposed to use-after-free.

No bound check

Reference

Alias

Identifying Unsafe
Memory Access2

Memory accesses
that can cause UAF

22

Heap Allocation

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

Drop Function

 Use-after-free occur only after the drop function

Identifying Unsafe
Memory Access2

23

Heap Allocation

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

Drop Function Memory accesses after drop function is vulnerable.

Identifying Unsafe
Memory Access2

 Use-after-free occur only after the drop function

24

Heap Allocation

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

ERASAN Instrumentation

Drop Function

 ERASAN checks only memory accesses after drop.

 Memory accesses after drop function is vulnerable.

Identifying Unsafe
Memory Access2

 Use-after-free occur only after the drop function

Memory accesses
that can cause UAF

Stack Cleaned-Up

25

Stack Allocation

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

S
co

p
e The Use-After-Free occur only after stack cleaned-up

Identifying Unsafe
Memory Access2

26

Stack Allocation

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

Stack Cleaned-Up

S
co

p
e

 Memory access after cleaned-up is vulnerable.

Identifying Unsafe
Memory Access2

 The Use-After-Free occur only after stack cleaned-up

27

Stack Allocation

memory
access

memory
access

memory
access

memory
access

memory
access

memory
access

Stack Cleaned-Up

S
co

p
e

 Memory access before the stack is cleaned-up is safe

 ERASAN checks only memory accesses after scope.

ERASAN Instrumentation

Identifying Unsafe
Memory Access2

 The Use-After-Free occur only after stack cleaned-up

Unsafe Memory
Access

Unsafe Memory
Access

Unsafe Memory
Access

Unsafe Memory
Access

RUST Source Code

✓memory access

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

ERASAN
: Efficient Rust Address Sanitizer

Safe Memory
Access

Safe Memory
Access

Safe Memory
Access

Safe Memory
Access

Safe Memory
Access

Safe Memory
Access

 ERASAN identifies which memory accesses are unsafe.

 ERASAN instrument only unsafe memory access sites.

Instrumetnation

28

Selective
ASan Instrumentation3

Unnecessary Check Reduction

Runtime Overhead

Bug Detection Capability

Comparison with ASAN--

Compile-time Overhead

29

ERASAN
Evaluation

 ASAN is native address sanitizer, unmodified version.

 ERASAN-unsafe conducts an unsafe block-based static analysis approach.

 ERASAN-rawptr checks all memory accesses through all raw pointers and aliased.
pointers, turning off optimization

 ERASAN adapted all proposed approaches.

30

Our Approach

Baselines

 Evaluate how ERASAN effectively removes the ASan checks using 23 benchmarks in static time.

 Removes 90.03% of sanitizer checks achieving a higher reduction rate than the other baseline.

Reduction
rate (%)

number of
checks (#)

-43,022Asan

26.30%↓36,116
ERASAN-

unsafe

62.95%↓24,521
ERASAN-

rawptr

90.03%↓10,197ERASAN

90.03%

Unnecessary check reduction 0

10

20

30

40

50

60

70

80

90

100

R
e

d
u

ct
io

n
 r

at
e

(%
)

31

26.30% ↓

62.95% ↓

90.03% ↓

ERASAN removes

sanitizer checks

90.03%

0

50

100

150

200

250

300

350

R
u

n
ti

m
e

 O
ve

rh
e

ad
 (

%
)

Reduction
rate (%)

overhead
(%)

-334.98%ASan

92.99%↓241.99%
ERASAN-

unsafe

162.94%↓172.04%
ERASAN-

rawptr

239.05%↓95.94%ERASAN

ERASAN improves

performance

239.05%

 Evaluate how ERASAN runtime overhead reduction due to reduced ASAN’s check instrumentation.

 Improve 239.05% performance achieving a higher improvement than the other baseline.

Runtime Overhead

32

92.99% ↓

162.94% ↓

239.05% ↓

 We collect 28 reproducible memory bugs to evaluate ERASAN against real-world memory bugs.

 ERASAN successfully detects all memory bugs in the 28 test cases.

ERASANASANNumberBug Type

✓✓11
Use

-After-Free

✓✓11Double-Free

✓✓5
Buffer-

Overflow

✓✓1
Null-Pointer-
Dereference

33

0

2

4

6

8

10

12

14

T
h

e
 N

u
m

b
e

r
o

f
B

u
g

s 11 11

5

1

28 Reproducible
memory bugs

ERASAN

Clearly
detects all test cases

 Remove 90.03% of existing Asan Checks.

 Significantly reduce ASan performance overhead by an average of 239.05%.

 Successfully detect 28 real-world memory bugs.

 Eliminate 56.88% more sanitizer checks than the state-of-the-art research (ASAN--).

 ERASAN efficiently reduces performance overhead, which has same bug detection capability as ASAN.

34

45th IEEE Symposium on Security and Privacy

Jiun Min
E-mail : min1905@unist.ac.kr

Dongyeon Yu
E-mail : dy3199@unist.ac.kr

Seongyun Jeong
E-mail : dy3199@unist.ac.kr

Dokyung Song
E-mail : dokyungs@yonsei.ac.kr

Yuseok Jeon
E-mail : ysjeon@unist.ac.kr

Thank you

ERASAN : Efficient Rust Address Sanitizer ERASAN Github repository

[Paper] [Open Soruce]

35

