®

Check for
updates

Certified Malware in South Korea:
A Localized Study of Breaches of Trust
in Code-Signing PKI Ecosystem

Bumjun Kwon', Sanghyun Hong?, Yuseok Jeon®, and Doowon Kim*®)
! The Affiliated Institute of ETRI, Daejeon, South Korea
2 Oregon State University, Corvallis, USA
3 Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
4 University of Tennessee, Knoxville, USA
doowonQutk.edu

Abstract. Code-signing PKI ecosystems are vulnerable to abusers. Kim
et al. reported such abuse cases, e.g., malware authors misused the stolen
private keys of the reputable code-signing certificates to sign their mali-
cious programs. This certified malware exploits the chain of the trust
established in the ecosystem and helps an adversary readily bypass secu-
rity mechanisms such as anti-virus engines. Prior work analyzed the large
corpus of certificates collected from the wild to characterize the security
problems. However, this practice was typically performed in a global
perspective and often left the issues that could happen at a local level
behind. Our work revisits the investigations conducted by previous stud-
ies with a local perspective. In particular, we focus on code-signing cer-
tificates issued to South Korean companies. South Korea employs the
code-signing PKI ecosystem with its own regional adaptations; thus, it
is a perfect candidate to make a comparison. To begin with, we build
a data collection pipeline and collect 455 certificates issued for South
Korean companies and are potentially misused. We analyze those cer-
tificates based on three dimensions: (i) abusers, (ii) issuers, and (iii) the
life-cycle of the certificate. We first identify that the strong regulation of
a government can affect the market share of CAs. We also observe that
several problems in certificate revocation: (i) the certificates had issued
by local companies that closed the code-signing business still exist, (ii)
only 6.8% of the abused certificates are revoked, and (iii) eight certifi-
cates are not revoked properly. All of those could lead to extending the
validity of certified malware in the wild. Moreover, we show that the
number of abuse cases is high in South Korea, even though it has a small
population. Our study implies that Korean security practitioners require
immediate attention to code-signing PKI abuse cases to safeguard the
entire ecosystem.

1 Introduction

The establishment of trust in software distributed over the Internet is challenging
due to the nature of software distribution: unknown sources and a high chance

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 59-77, 2021.
https://doi.org/10.1007/978-3-030-86890-1_4

60 B. Kwon et al.

of tampering during distribution. To overcome these challenges and to guarantee
the authenticity and integrity of software, Code-signing PKI is designed and now
becomes a de-facto standard in the software ecosystem. Similar to other PKIs
such as the Web’s PKI, the code-signing PKI also requires Certificate Authorities
(CAs) to attest that a certificate belongs to a legitimate software publisher.
The CAs issue code-signing certificates for publishers, after the vetting process.
Software publishers sign their software with their issued certificates to warrant
the authenticity and the integrity of the software. In turn, clients can establish
trust in the signed software by verifying the digital code-signing signature. They
can know not only the identity of the publisher but also that the software has
not been altered during the distribution.

A security rule of thumb for a user is to only execute or install software that
contains valid signatures from reputable software publishers with whom she can
establish trust. However, anecdotal evidence has shown that the security rule can-
not be guaranteed since software properly signed by legitimate publishers can be
severe malware [10,24,31]. For example, the Stuxnet worm included device drivers
that had been properly signed with the private keys stolen from two Taiwanese
semiconductor companies, located in close proximity [10]. The fact is that the
malicious usage of these stolen private keys helps remain undetected for a longer
period than the other malware [10]. Furthermore, the abuse of code-signing is also
prevalent among Potentially Unwanted Programs (PUPs) [5,16,17,32].

This observation has sparked an interest in the real-world breaches of trust
in the code-signing ecosystem. In particular, Kim et al. [13,14] conducted a
large-scale analysis of code-signing abuse cases in the Windows code-signing PKI
ecosystem. However, these studies were mostly conducted from a global perspec-
tive; hence, they often left the breaches that would happen in sub-populations
overlooked. Local software publishers may mainly target local customers; so in
this case, the local publishers should have regional adaptations in their code-
signing ecosystem, considering the environmental factors of their countries or
regions—e.g., because of law'. For instance, regulations may state the qualifica-
tion of a CA or force how the PKI should be operating. Thus, the characteristics
of abuse cases can be different from the previous studies. Moreover, the analy-
sis tools in prior work focus on emphasizing the most prevalent findings in the
collected datasets.

In this paper, we tackle the prior emphasis on the global perspective and
make a first step towards understanding the breach cases in the sub-populations.
Specifically, we ask: What characteristics can we find from an analysis of a spe-
cific country? To answer this question, we give an eye to the Windows code-
signing PKI in South Korea. South Korea is known to have its unique PKI
ecosystem, developed alongside the digital signature act (DSA), which was estab-
lished in 1999 [6,15]. DSA states that only a signature is valid if it is endorsed
by an accredited CA. South Korean users are also known to be exposed to vari-
ous “security software” necessary for web activities where identity verification is

! PKI in Asia — Case Study and Recommendations: https://fidoalliance.org/wp-
content /uploads/FIDO-UAF-and-PKI-in- Asia- White- Paper.pdf.

Certified Malware in South Korea 61

required e.g., banking, e-commerce [28,29]. The electronic financial transaction
act, which became active in 2007, has fostered such an environment. Therefore,
we may expect to see unique characteristics reflected in the code-signing PKI
ecosystem as well. Nevertheless, little is known about the regional differences;
the same applies to the Korean code-signing PKI abuse.

We design a system, which extracts code-signing certificates and identifies
Korean certificates that are likely compromised. We utilize information from the
certificate and the scanning reports of the binary for identification. We examine
the characteristics of Korean signed malicious samples and compromised certifi-
cates. Specifically, we investigate how prevalent code-signing abuse is, who are
the abusers, who issue the certificates, and whether the compromised certificates
are adequately revoked or not.

We found code-signing abuse is prevalent in Korea for its population. The
number of signed malicious samples accounted for 1.8% of the total samples,
whereas the population is nearly 1% among the global internet users. We also
find the unique distribution of the CAs. Thawte dominates the population and a
local CA Yessign is observed. Yessign is out of the code-signing business and that
could be a potential problem in revocation. Such characteristics might be due to
the web environment in Korea, cultivated by its regional PKI laws. Besides, we
observe revocation is not done properly in Korea as well. Only 6.8% of the cer-
tificates are revoked, and eight certificates have set revocation dates ineffectively.
It endangers users of the signed malicious binaries.

Contributions. In summary, we make the following contributions:

— We design a system that collects the malicious programs and compromised
certificates from South Korea. We identified 455 certificates that are issued
for South Korean companies and are potentially misused by malware authors.

— We highlight the abuse cases in the code-signing ecosystem in South Korea.
Using the observations in the previous studies as our baseline, we report the
commonalities and differences in our findings.

— Using those differences, we analyze and identify the distinct characteristics
of Korean compromised certificates that are fostered by the regional laws.

2 Background and Motivation

In this section, we briefly overview the code-signing PKI; especially, the code-
signing process, the distinct characteristic of the code-singing PKI that is mainly
different from the Web’s PKI, and revocation that can cause extra security
threats. We then highlight our motivation why we need to study the unique
characteristics of the Korean code-signing PKI ecosystem.

2.1 Overview of the Code-Signing PKI

Code-signing is a security technology that utilizes the digital signature mecha-
nism. It helps authenticate the publisher of a software program and guarantees
the software’s integrity after signing. It requires creating a digital signature using

62 B. Kwon et al.

the publisher’s private key (i.e., signing), and then embed the digital signature into
the software. In turn, for clients, when verifying the signed software, they need the
public key associated with the publisher’s private key to verify the signature.

The code-signing also relies on Public Key Infrastructure (PKI), called the
Code-signing PKI. As the nature of the Internet, clients cannot trust any pub-
lic key transferred over the Internet that claims to be legitimate. It is because
public keys do not have any information about the ownership. To mend this
problem, third-parties, called Certificate Authorities (CAs), attest that a public
key belongs to a particular owner (in this case, a software publisher or developer)
who possesses the associated private key. We call this endorsed key a certificate.
As long as we trust the CAs, we trust all certificates issued by the CAs except
for revoked certificates. This chain of trust starts from the end entity (i.e., pub-
lisher) to the root certificate pre-installed in client-side systems such as operating
systems or web browsers.

2.2 Code-Signing Process

Like the Web’s PKI (e.g., TLS), a software publisher first applies for code-
signing certificates to CAs with the applicant’s public key. After verifying the
publisher’s identity, the CA issues a code-signing certificate based on the X.509
v3 certificate standard [8]. The software publisher uses its private key associated
with the issued certificate to sign its software. Specifically, in the signing process,
the hash value of the software is first computed, and then, the hash value is
digitally signed with the publisher’s private key. Finally, the digital signature
and the chain of the certificates are bundled with the original software. This
whole process is illustrated in Fig. 5. In turn, the client has to verify the signature
with the public key embedded in the certificate when encountering the signed
software. The verification process allows clients to recognize any modifications
of the program when verifying the signed software.

Trust Timestamping. The distinct difference between the Web’s PKI and
the code-signing PKI is trust timestamping. The trust timestamping guarantees
when a binary file is signed, and if a binary is signed before the certificate’s expi-
ration date, the validity extends after the certificate expires, which is different
from the Web’s PKI where the validity of a domain is no longer ensured after
the certificate expires.

As illustrated in Fig.5, when a binary file is signed, the hash value of the
binary file is sent to a Time Stamping Authority (TSA), and the TSA issues a
trusted timestamp. The TSA signs the timestamp and the hash value with its
certificate. This so-called trust timestamp is sent back to the publisher. Then
the software publisher embeds the trust-timestamp signature and the TSA’s
certificate into the signed software.

2.3 Revocation

Another important role for CAs besides issuing certificates is to revoke the com-
promised certificates that they have issued. There are various reasons for CAs

Certified Malware in South Korea 63

to revoke their issued certificates; (1) when the private key associated with a
certificate is stolen and used to sign malware samples [13], (2) when a weak
cryptographic key is used to generate a certificate [33], (3) when CAs are hacked
and compromised, and then issue certificates for adversaries [24], and (4) when
a certificate is issued under the name of a shell company or through imperson-
ations, etc. [13].

There are two primitive ways for CAs to disseminate the revocation status
information; (1) Certificate Revocation List (CRL) and (2) Online Certificate
Status Protocol (OCSP). In CRL, clients need to download the revocation lists
periodically and to check if the certificate is on the lists. If the certificate’s serial
number is on the list, clients can consider the certificate is revoked and no longer
valid. OCSP is the successor to CRL, and it allows clients to query a CA for the
revocation status of a certain certificate rather than downloading a bulk of the
serial numbers using CRLs. Both CRLs and OCSP responses are signed with
CAs’ certificates to guarantee their integrity.

Erroneous Revocation Data Setting. When revoking certificates, CAs must
set the effective revocation date (c.f., Sect.2.3). Kim et al. [14] have examined
the security problems of the current code-signing revocations. If CAs erroneously
set an effective revocation date, all signed programs (including malware) signed
before the effective revocation date can remain valid even though the certificate
is revoked. It is due to the trust timestamp mechanism.

2.4 Motivation

Code-Signing Abuse. Recent measurement studies [5,13,14,16-18] have
reported that adversaries have attempted to compromise the code-signing PKI
for their malicious purpose; their main purposes are 1) to efficiently distribute
their malware and 2) to lure clients into installing their malware. Attackers can
make a bold move of stealing the private keys of benign software companies
and use the keys to sign their malware, which makes a much powerful attack.
The signed malware now looks like a legitimate product from a benign software
company, which misleads clients to believe the signed malware is safe to execute.
Furthermore, adversaries incorporate shell companies and use this fake company
information to get issued code-signing certificates legally and legitimately from
the code-signing CAs.

Motivation for a Regional Study. Previous measurement studies have been
conducted from a global perspective considering software publishers and CA as
global entities. However, this global perspective analysis can lead to misunder-
standing or neglecting local characteristics because it mainly focuses on global-
scale cases. In other words, the code-signing abuse cases may vary depending on
the locality of the attackers and their targets. Thus, to enhance the security of
the code-signing PKI ecosystem, we need to understand 1) the local character-
istics of the code-signing abuse cases and 2) adversaries who compromise local
software publishers targeting local victims. Moreover, in terms of data collection,

64 B. Kwon et al.

the previous methods and results may often be biased to the majority population
and a limited number of countries. Thus, a regional target attack campaign with
a small number of malware samples could have been neglected or overlooked.

South Korean Web Environment. We focus on South Korea for this study.
South Korea has a unique environment fostered by the regulations. Two acts
played as the dominant factor. The digital signature act (DSA) established in
1999 has restricted the “valid” form of digital signatures [6,15]. It only con-
cedes signatures issued from “accredited CA”s to be legitimate. There are six
accredited CAs, including KFTC, KICA, Koscom, KECA, KTD, and Initech [4].
Among them, KFTC once served as a code-signing CA under the name of
“yessign” (https://www.yessign.or.kr/). KICA and KECA act as a distributor
of the global code-signing CA. KICA (https://www.kicassl.com/) is a relay of
Comodo; KECA (https://cert.crosscert.com/) offers Digicert and Thawte prod-
ucts. Next, the electronic financial transaction act, which became active in 2007,
is known as the main cause of the notorious Korean web environment. Due to
this act, Korean users have been forced to install various “security software”
such as keylogger detection for web activities [28,29]. The flood of these manda-
tory “legitimate” software, which are digitally signed, may have introduced side
effects that incapacitate the defense mechanism of code-signing. For instance, a
survey was conducted on Korean adware victims [1], which reported that only
2.8% consciously clicked “allow install” the adware. Moreover, anecdotes [2,3]
show that South Korean software companies have become an attractive target
for adversaries. Specifically, many South Korean software companies were stolen
the private keys of their code-signing certificates, and the stolen private keys
were misused to sign malware. Therefore, we believe South Korea is an attrac-
tive candidate for studying the local characteristics of the code-signing PKI, and
understanding such characteristics may help improve the security of the entire
code-signing PKI ecosystem.

3 Data Collection

To better understand the landscape of code-signing abuse in South Korea, we
first need to capture signed malware and PUPs in the wild and extract code-
signing certificates. From the code-signing certificates, we need to obtain infor-
mation such as publisher names (common names), locality addresses, issue dates,
expiration dates, issuers (CAs), and more. However, due to the nature of soft-
ware distribution, it is significantly challenging to collect all signed malicious
samples and their code-signing certificates in the wild. Whereas in the Web’s
PKI, a comprehensive list of TLS certificates can be readily collected by scan-
ning the entire IPv4 addresses with a network scanner (e.g., ZMap [9]). This
is because signed malware samples can be distributed through a pre-installed
updater/installer tool; or others can be distributed from external storage or
directly from websites. To overcome these challenges, we present a new collec-
tion pipeline for Korean code-signing certificates that are likely compromised,
as illustrated in Fig. 1.

Certified Malware in South Korea 65

Windows
Extract R e Sigcheck
Cert|f|cates / SignTool
Collect only ﬁo
PE flles >
AII certlflcates Re
Extract
only KR
Data source
(VirusShare) Only PE files

Linux machine Valid certificates

\@V

Fig.1. The overview of our Korean compromised certificates collection
pipeline. (1) Malicious files are collected from VirusShare, (2) filter out non-PE files,
(3) extract code signing certificates from PE files, (4) validate PE files and certificates
using the Windows SigCheck and SignTool, and (5) extract only Korean certificates.

3.1 Data Source

We utilize VirusShare (http://virusshare.com), the large corpus of malware, to
collect signed malware and to extract Korean compromised code signing cer-
tificates from the corpus. We also utilize VirusTotal (http://virustotal.com) to
label the collected signed malware samples.

VirusShare and VirusTotal. We collect malicious binaries from VirusShare
that is one of the most extensive sets of malware samples available to the public.
Since the data sets are freely downloadable, many security research works have
utilized them. The malicious samples consist of not only Windows Portable Exe-
cutable (PE) files, but also HTML files including malicious JavaScript code. We
sample 57 tar files (out of 312 tar files) from VirusShare. Each tar file contains
either 131,072 or 65,536 malware samples. We collect a total of 5,934,399 mali-
cious files.

To classify the malicious samples, we use VirusTotal. VirusTotal is a Web
service where users can freely upload executable samples (including malware
and benign samples) and analyze the samples to classify with up to 63 different
Anti-Virus (AV) engines. The service provides a report containing the number
of AV engines that detect the samples as malicious and the corresponding labels.
In our work, we utilize that information to classify the collected samples (c.f.,
Sect. 3.3).

3.2 System Overview

In this section, we describe our new system. As presented in Fig. 1, the new
system is a pipeline for identifying digitally signed PE files and extracting com-
promised Korean code-signing certificates.

Identifying PE Files. We first filter out non-PE files from the total of
5,934,399 malicious files (out of 57 VirusShare tar files) since the files include not
only PE files, but also JavaScript code. The 5,934,399 samples are fed into our

66 B. Kwon et al.

system shown in Fig. 1 to exclude non-PE files and non-signed PE files. When a
PE file is signed, the size of the IMAGE_DIRECTORY_ENTRY _SECURITY field is
non-zero. 525,071 digitally signed PE files remain after this step, which accounts
for 8.8% of the original data set. We now move next to extract code-signing
certificates from signed PE files.

Extracting Certificates. We utilize the Python PE module? to locate the
PKCS #7 SignedData structure that contains code-signing certificates and to
dump the structure into a file encoded in Distinguished Encoding Rules (DER).
Of 525,071 signed PE files, only 495,124 PKCS #7 files are extracted due to
parsing errors. Then, we extract all code-signing certificates (including TSA
certificates and code-signing intermediate certificates) from the DER-encoded
PKCS #7 files, and then we filter out non-leaf code signing certificates using
the keyword of “CodeSigning” in the extendedKeyUsage extension field and the
“Basic Constraints” field.

Valid Korean Certificates. The last part is where we obtain the set of Korean
certificates that are valid. We can specify the certificates belonging to a particular
country by looking at the country code in the leaf certificate’s subject field. If the
country code of a leaf certificate is “KR,” we know that the certificate is issued
for a Korean publisher. Using this concise but effective method, we identify
844 certificates issued to Korean identities and 8,815 malicious PE files signed
with those certificates. The number of PE files accounts for 1.8% of the initial
data set.

Now we explain the verification process. Only valid certificates remain after
this step. We first verify the digital signatures and code-signing certificates
embedded in PE files using both SignTool®> and SigCheck? tools in the Win-
dows Sever 2016. SignTool returns error code with a message for the scanned
certificate. Table4 enumerates the error code returned by SignTool and the
associated messages. We consider the three messages of “Successfully Verified,”
“0x800B0101,” and “0x800B010C” valid since the two error code, “0x800B0101”
and “0x800B010C” are returned only when PE samples have been properly
signed. Specifically, 0z800B0101 returns when a PE file has not been trust-
timestamped and its certificate expires, and when a certificate is revoked, 0x800B
010C returns. Detailed information is described in Table4. In the end, we have
783 valid Korean certificates and 8,093 PE files signed with the valid Korean
certificates as described in Table 5(left). In other words, 94.2% of signed samples
have a proper PKCS#7 structure.

3.3 Binary Labeling

Samples from VirusShare may contain false positives. Here, we describe the line
of efforts we made to reduce the false positives. First, we re-scan the malicious

2 https://github.com/erocarrera/pefile.
3 https://docs.microsoft.com/en-us/windows/desktop/seccrypto/signtool.
4 https://docs.microsoft.com/en-us/sysinternals /downloads /sigcheck.

Certified Malware in South Korea 67

samples using VirusTotal. It is known that AV engines’ labels may change over
time as more evidence is gathered. Thus, some samples may be re-labeled as
benign. We observe 234 PE samples among the malicious samples signed with
Korean code-signing certificates are no longer malicious after the re-scan.

Next, we set a threshold to filter out samples with less confidence. For each
signed PE sample, we define ¢,,,4; as the number of AV engines in VirusTotal
that label the sample as malware. We consider a signed PE file as malware
when ¢,,q; > 10. For example, ¢;,q; > 10 means that about 15% of AV engines
(out of more than 60 AV engines in VirusTotal) detect the samples as malware.
This approach is presented in prior works [13,19]. After this step, we now have
455 valid Korean certificates used to sign malicious samples detected by more
than 10 AV engines in VirusTotal.

As a final step, we utilize a malware labeling tool, called AVClass [30] to label
our malicious samples and classify them into malware and Potential Unwanted
Program (PUP).

4 Code-Signing PKI Abuse in Korea

Table 5(right) summarizes the breakdown of PE malicious files, signed PE mali-
cious files, Korean compromised certificates, and Korean malicious PE files
signed with the Korean certificates. With this data, we investigate the char-
acteristics of code-signing PKI and the abuse within Korea. Here, we try to
answer the following research questions.

1. QI1: How prevalent is code-signing abuse in Korea?

2. Q2. Who abuses the code-signing in Korea?

3. Q3: Who issued the certificate?

4. Q4: Are the certificates issued with safe cryptographic guarantees?
5. Q5: How long do the abusive certificates survive in Korea?

The final goal for these questions is to ask the main research question we raised
in the introduction: Q: What characteristics can we find from an analysis of a
specific country?

4.1 Abusers

We answer a couple of questions Q1. How prevalent is code-signing abuse in
Korea? and Q2. Who abuses the code-signing in Korea? in this section. We ini-
tiate with simple statistics to answer the first question. For the second question,
we investigate the problem from two different angles 1) the malicious sample
family based on their labels and 2) the publisher’s information stated on the
certificate.

Prevalence. As presented in Table5(right), signed malicious binaries with
Korean certificates are 844 in numbers. It accounts for 1.8% of the data set,
which is a global collection. The Korean internet population is about 5 million,

68 B. Kwon et al.

Table 1. Top 10 Malware/PUP label breakdown. SINGLETON is labeled when
AVClLass is unable to find a family name for a malware sample such as generics. On
average, a Korean certificate is used to sign 2.5 different family of malicious samples.

Bold malware families are considered as trojan or severe threats.

Family label PE Certificate
Kraddare 2,850 (41.70%) | 198 (43.52%)
Onescan 798 (11.68%) | 50 (10.99%)
SINGLETON* | 418 (6.12%) 191 (41.98%)
Sidetab 208 (4.23%) |5 (1.10%)
Hotelip 177 (2.59%) | 6 (1.32%)
Openshopper | 169 (2.47%) 7 (1.54%)
Delf 158 (2.31%) | 32 (7.03%)
Viruscure 243 (3.23%) 36 (6.79%)
Adkor 135 (1.98%) 63 (13.85%)
Hebogo 121 (1.77%) 7 (1.54%)
Total 6,835 (100%) | 1,123 (246.81%)

Table 2. Top 10 common name, issuer, and region breakdown. N/A in region
means that neither province nor locality name information are specified.

Common Name PE Cert. Issuer Cert. Region Cert.
cloudweb Inc 1,040 (15.22%) 3 (0.66%) Thawte 336 (73.85%) Seoul 267 (58.68%)
nbiz Ltd. 702 (10.27%) 5 (1.10%) VeriSign 74 (16.26%) Busan 63 (13.85%)
UCF 489 (7.15%) 4 (0.88%) YesSign 19 (4.18%) Gyeonggi-do 63 (13.85%)
NKsolution Corp. 358 (5.24%) 5 (1.10%) eBiz Networks 10 (2.20%) N/A 20 (4.40%)
Akorea 306 (4.48%) 5 (1.10%) Symantec 7 (1.54%) Incheon 11 (2.42%)
SearchLink Co., Ltd. 263 (3.85%) 3 (0.66%) GlobalSign 6 (1.32%) Gyeongsangbuk-do 7 (1.54%)
TGSM Inc. 194 (2.84%) 5 (1.10%) COMODO 3 (0.66%) Dacgu 7 (1.54%)
JE communication 166 (2.43%) 4 (0.88%) Gyeongsangnam-do 6 (1.32%)
A a0 161 (2.36%) 2 (0.44%) Jeollanam-do 2 (0.44%)
OPEN.co., Itd 158 (2.31%) 4 (0.88%) Ulsan 2 (0.44%)
Total 6,835 (100%) 455 (100%) Total 455 (100%) Total 455 (100%)

which occupies about 1% of all internet users worldwide®. Compared to its popu-
lation, code-signing abuse is quite prevalent in Korea. It may imply that Koreans
tend to be vulnerable to code-signing abuse and attackers are exploiting it. Such
a tendency might have been formed due to its web usability environment, as
mentioned in Subsect. 2.4.

Malicious Sample Family. To better understand what kind of malware family
used Korean code-signing certificates, we utilize the VirusTotal reports of our
collected malicious samples and AVClass [30] to label the samples. We identify
278 different malicious sample families, and we break down the top ten malware

5 Internet world stats: https://www.internetworldstats.com /stats3.htm.

Certified Malware in South Korea 69

and PUP labels as described in Table 1. The SINGLETON label indicates that
AVClass is unable to classify malicious samples.

About 41% malicious samples signed with Korean certificates is kraddare. This
family is considered PUP/PUA, which redirects to unwanted homepages without
user action, changes the browser settings, shows unwanted advertisements using
pup-ups [11]. Microsoft Defender Antivirus [22] classifies the malicious sample
as a “severe” threat and removes the sample as encountered. The following mal-
ware family is onescan. The family is considered as a “severe” threat by Windows
Defender Antivirus, and called “fakeAV [23].” The malware pretends to scan vic-
tims’ computers, and reports to them that their computers have been infected by
any malware, and then asks them to pay for cleaning up the reported malware.
However, the victims’ computers are not infected by any malware, and nothing
is actually done by the malware, but victims pay for it. Delf [21] is a trojan that
redirects Web traffic, downloads malicious programs, etc. On average, a Korean
certificate is misused to sign 2.5 different families of malware/PUP samples. It
would imply either 1) a couple of malware groups share a code-signing certificate
to sign their malware or 2) a malware group produces a couple of malware families.
However, we have little evidence to specify which.

Publisher. In Windows, when executing/installing a signed PE file, a client is
prompted a request that shows the publisher name of the PE file by the system.
Only after the client accepts the request, the signed PE files will be executed.
Details about the publishers’ information are available when clients look at the
certificates since certificates include publishers’ information such as the com-
pany/individual name, physical address (country, province, street address, and
zip code), etc.

We start the investigation from the publisher’s name stated in the Common
Name (OID: 2.5.4.3) field. The common name is a required field in Subject of
the X.509 v3 standard. It is used to identify the legal name of a publisher.
The Legal names can be specified in the field only when verified by CAs using
notarized documents or legal documents from attorneys. Unlike TLS, where the
common name should have a domain name to be verified, in the code-signing
PKI, the common name is usually an organization’s name such as Google Inc.
and Microsoft Corporation. We observe 330 common names in 455 Korean cer-
tificates; on average, a company has 1.4 different code-signing certificates to sign
malicious samples. The top 10 publishers are enumerated in Table 2. cloudweb
Inc has the largest signed malicious samples in our data set. The publisher had
three different certificates to sign 1,040 malicious samples.

Furthermore, we could find some reputable Korean companies within the
certificates misused to sign malicious samples. We believe that their private keys
associated with the certificates were likely stolen and used to sign malicious sam-
ples. For example, the certificate of a Korean software company that develops
not only software tools but also an AV product was misused to sign malware,
called “plugx.” The malware is a kind of Remote Access Trojan (RAT). For-
tunately, the certificate was explicitly revoked, and the malware is no longer
valid. Moreover, an English education company located in the Gangnam district

70 B. Kwon et al.

released a program with a Trojan downloader malware payload. The malware
was distributed at a legitimate website. Since it is a reputable and legitimate
company, we believe that the development infrastructures were compromised,
and the payload was injected into the legitimate program.

Next, we take a look at where these publishers are located. We use the
Province filed (OID: 2.5.4.8) to locate the regions of the publishers. According
to the minimum requirements [7], the Province field is required to be specified
when the Locality Name field (OID: 2.5.4.7) is absent. However, we observe that
20 certificates issued by YesSign do not include any information in both the
Province field and the Locality Name field; YesSign does not obey the require-
ment. Specifically, YesSign specifies their CA name on the Organization Name
filed (OID: 2.5.4.10) rather than the publisher’s organization name. Most mali-
cious publishers (58.7%) are located in Seoul as depicted in Table2. We also
manually investigate certificates located in a small, rural, agricultural area where
IT companies are less likely to exist. We observe that two certificates located
in a small agricultural area are issued to non-existing IT companies. The same
name of the IT companies exists, but they are located in Seoul, not the small
rural area. Moreover, the two certificates were issued on the same day, and the
certificates were misused to sign the same malicious sample families; onescan,
kraddare, and jaik. Therefore, we believe that the two publishers are related to
each other, even though they use different publisher names. This goes along with
our findings from analyzing the malware families.

4.2 Issuer

In this section, we answer the questions: Q2: Who issued the certificate? and
Q3: Are the certificates issued with safe cryptographic gquarantees?.

Certificate Authority (CA). CAs issue code-signing certificates to software
publishers (e.g., software developers). In the certificates, CAs specify their infor-
mation such as the country, address, name of the issuer CAs. Similar to the
Subject field, the issuer information is located in the Issuer field.

We observe only seven CAs, and certificates issued by Thawte are the major-
ity (73.8%), which contradicts the finding [13] that VeriSign dominates the code
signing certificate market share. We believe it is because Thawte is distributed by
one of the accredited CAs in Korea, as we described in Subsect. 2.4. Also, Thawte
allows publisher names with Korean alphabets®, which may have boosted the
market share. In addition, we find “YesSign”” in our data set, a CA which is
hardly observed in prior works [13,14]. YesSign is one of the largest Korean CAs,
and is operated by Korea Telecommunications and Clearings Institute (KFTC).
The CA no longer issues code-signing certificates, but it still provides the OCSP
and TSA service. However, as they stopped the business, there is a chance the
revocation checking services may shut down in the future, which may make users
vulnerable.

6 Provided by crosscert: https://www.crosscert.com/symantec/02_1_04.jsp.
" https://www.yessign.or.kr.

Certified Malware in South Korea 71

Table 3. Signature and public key algorithm breakdown.

Signature algorithm | Count Public key algorithm | Count
MD5 With RSA 6 (1.31%) | RSA 455 (100%)
SHA1 With RSA 413 (90.77%) | DSA 0 (0%)
SHA256 With RSA |36 (7.91%) |ECDSA 0 (0%)
Total 455 (100%) | Total 455 (100%)

Cryptography Algorithm. It is important to use strong cryptography algo-
rithms for the certificates. Certificates with a weak algorithm may be utilized
for collision attacks. It is critical in code-signing as an attacker could perform
collision attacks on time-stamped binary samples with weak algorithms. MD5
and SHA1 are weak hash algorithms, vulnerable to collision attacks. We have
observed a severe security threat where Flame malware exploited an unknown
chosen prefix collision attack against the MD5 hash algorithm [31]. Google and
CWI Amsterdam demonstrated that two different files could have the same
SHAT1 hash [12]. Although the SHA1 collision attack against certificates is not
yet reported, it could be exploited to create fake certificates in the near future.
Therefore, Microsoft deprecates MD5 and SHA1 hash algorithms in 2013 and
2015, respectively [20,26]. Still, CAs should be aware of this fact and move on
to SHA256.

We examine what cryptography algorithms are used for signature and public
keys in Korean certificates. As depicted in Table 3, all certificates in our data
set use RSA for public key generation. For the signature algorithm, the majority
(around 91%) use SHA1. We can also see the use of MD5 in a few certificates
(6, 1.31%). It implies that weak algorithms are still prevalent in Korea, which
has the potential to lead to serious security problems.

4.3 Certificate Life-Cycle

A life cycle of a certificate starts from its issue date and ends at its expiration
date. In case it is compromised, a revocation is conducted to invalidate the
certificate. However, we know that some signed binaries may survive even after
their expiration and revocation due to the trusted timestamp. To answer the next
research question Q4: How long do the abusive certificates survive in Korea?, we
start the examination from the validity period of the Korean certificates. Then we
check how prevalent trust timestamping is among the signed malicious binaries.
In the end, we investigate if the revocation is performed effectively for those
certificates, invalidating all the signed malware.

Validity Period. Each certificate has two fields, notBefore and notAfter for
validity period; notBefore is an issue date and notAfter is an expiration date. In
other words, a certificate is only valid between notBefore and notAfter, inclusive.
As shown in Fig.2, most certificates (69.43%) were issued between 2009 and
2012. It does not indicate that the signed malware was collected between the

72 B. Kwon et al.

Number of Certificates

Issue Year

Fig. 2. Issue year. Around 70% of
certificates in our data set were issued
between 2009 and 2012.

Number of Certificates

| =

0 1 2 3
Validity Period (number of years)

Fig. 3. Validity year. The majority
is one-year-valid certificates since CAs
usually issue one-year-valid certificates.

periods because the signed samples are still being valid even seven or eight years
have passed due to the trust timestamping.

Figure 3 shows that most certificates (70.57%) are only valid for one year
as expected since CAs typically issue one-year-valid code signing certificates.
However, interestingly, the validity period of four certificates is less than one
year. Two certificates issued by Thawte are valid only for three and nine months;
one certificate done by VeriSign is valid only for 11 months, and a certificate
issued by YesSign is valid for four months. Unlike the TLS certificates, because
the code signing PKI has the trust timestamping, signed binary samples can be
valid even after their certificate expiration date as long as the samples are trust
timestamped. Therefore, expiration dates do not count as much as the Web’s
PKI. We do not observe that certificates are valid for more than three years.

Trust Timestamp (Signing Date). The distinct difference between the
Web’s PKI and the code signing PKI is the trust timestamping mechanism
(c.f., Sect.2.2). We measure how many Korean malicious samples are trust-
timestamped. Of 8,815 Korean malicious signed PE samples, we observe that
6,190 samples (70.2%) are trust-timestamped. Only when we consider the valid
malicious samples (¢pqr > 10), 4,625 samples (67.7%, out of 6,835) contain the
signing date (trusted timestamps). It means that most malicious samples use
trust timestamping to extend their validation period beyond their certificate’s
expiration date. We also examine when the malicious samples are signed; we
utilize issue dates and expiration dates. More than 50% of malicious samples
are signed about 200 days before their expiration dates, as shown in Fig.4. It
indicates that most malicious samples are consistently signed with compromised
certificates during the validity periods.

Revocation Status. All certificates we have identified in the paper are mis-
used to sign malicious binary samples. Therefore, they should be revoked. We
check whether or not the certificates in our data set are revoked using CRLs.
We observed three security threats that let signed malware alive. First, only
31 (6.81%) of 455 Korean certificates are explicitly revoked. It implies that mal-

Certified Malware in South Korea 73

//,7[—
1 /
08| : S
4 //
e
w i
Lo o6 LA
(&} 4 /
/
0.4 [l
/»/ —— Expiration date - Signing date
/s —- Signing date - Issue date
0.2 /
1/
o T T T T T T T T T
200 400 600 800 1000

Dates

Fig. 4. The difference in days between signing dates and issue dates, and between
expiration dates and signing dates.

ware signed with not-revoked certificates may remain valid even after the certifi-
cate’s expiration date, due to the trust timestamping mechanism (c.f., Sect. 2.2).

Second, we encountered CRLs that are unreachable. Two reasons interfered
with accessing and fetching the CRLs; (1) the CRL domain was taken by a
domain re-seller, and (2) the CRL file was moved/removed, returning a 404
error. Those findings are in line with prior work [14]. Clients exposed to these
certificates become vulnerable as they cannot check the revocation status of
these certificates.

Lastly, several certificates were not effectively revoked. Signed malware can
continue to be valid, although its certificate is revoked if the revocation date is
set erroneously (c.f., Sect.2.3). We measure if Korean signed malicious samples
are still valid as CAs erroneously set the revocation dates after the samples’
signing dates. We find that 321 malicious samples are still valid, and eight Korean
certificates are used to sign the samples. The average difference between the
signing date and the revocation date is 6,013.01h (250.51 days); the shortest
difference is 11.04h (0.46 days), and the longest one is 25,389.82h (1,057.91
days, 2.9 years).

Although the certificates are mostly issued to be valid for a year, several
signed malware remain a threat for an extended period due to time-stamping
and the clumsy set of revocation dates.

5 Related Work

Compared to the Web’s PKI, little research has been conducted on the code sign-
ing PKI. The first attempt [27] was done in 2010 by F-Secure. In the attempt,
they introduced the ways of abusing Microsoft Authenticode [25]. However, the
work was presentation slides focusing on introducing new threat models rather
than a research paper. In 2015, Kotzias et al. [17] examined 356,000 digitally
signed samples collected between 2006 and 2015. They observed that most of
the collected signed samples were Potentially Unwanted Programs (PUP), while
signed malware was relatively uncommon in their corpus. Kim et al. presented
new threat models that highlight the breaches of trust in the code signing PKI.
Kim et al. also identified the security problems of the revocation mechanisms cur-

74 B. Kwon et al.

rently deployed in the wild. However, those studies are conducted from a global
perspective while we measure Korean compromised certificates’ characteristics.

6 Conclusion

We investigate the characteristics of code-signing abuse in South Korea. We
design a system that extracts abusive Korean code-signing certificates with a sim-
ple but effective method. A couple of findings were related to its unique web envi-
ronment fostered by regulations. South Korea has its own government-accredited
CAs, and these CAs affect the certificate landscape. We observe Thawte, re-selled
by one of the accredited CAs, dominating the population. Another accredited
CA even acted as a code-signing CA. However, the CA is no longer in busi-
ness, which is a potential threat as they might stop the revocation service. We
observed that code-signing abuse is quite prevalent in Korea, and it might be
due to the exposure of mandatory installation for using the web. Besides, we
also found a common vulnerability reported in prior works. Only 6.8% certifi-
cates have been revoked, and eight certificates of them have erroneous effective
revocation dates, which extends the validity of signed malicious samples.

Acknowledgements. We thank the anonymous referees for their constructive feed-
back. This research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education
(2021R1F 1A1049822). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the sponsor.

A Appendix

Table 4. SignTool error code & message.

Validation | Error code Message

Valid N/A Successfully verified
0x800B0101 Expired certificates
0x800B010C Revoked

Invalid 0x800B0O10A Not a trusted root CA
0x80096010 Signature does not match the file
Terminated in a root cert | Not trusted by the trust provider
No signature found No signature found

Certified Malware in South Korea 75

Table 5. Breakdowns. Error code of Korean malicious PE files (left), PE files and
certificates (right).

Validation | Error code KR malware Type |PE & Cert. Number

Valid Successfully Verified 5,714 Total | All malicious sample 5,934,399
0x800B0101 558 PE file 3,240,176
0x800B010C 1,821 Signed PE file 525,071
Valid total number 8,093 PKCS #7 495,124

Invalid 0x800B010A 405 Korean | Malicious signed PE 8,815
0x80096010 94 Malicious cert. 844
Terminated in a root cert. 24 Valid malicious signed PE 8,093
No signature found 199 Valid malicious cert. 783
Invalid total number 722 Valid malicious signed PE (¢nar > 10) 6,835

Total number ‘ 8.815 Valid malicious cert. (¢mar > 10) 455

CAs

0o 4
idd T e
(5) TSA

Publishers Clients

Fig. 5. Code-signing process. (1) A publisher applies for a code-signing certificate
to a code-signing CA with her/his identifications such as government-issued photo IDs,
(2) After vetting, the CA issues a code-signing certificate to the publisher, (3) Using the
SignTool (a signing tool provided by Microsoft), the software publisher signs a binary
sample with the certificate, (4) when a TimeStamp Authority (TSA) is specified for
timestamping (c.f., Sect. 2.2), the signing tool sends the hash value of the binary sample
to the TSA server, (5) The TSA server issues the timestamp and signs the timestamp
with the TSA’s private key, and send them back to the signing tool, (6) The signing tool
finally embeds the code-signing and the TSA certificate chain, the digital signature,
and the timestamp into the binary sample, and (7) Finally, the publisher distributes
the signed binary sample in the wild.

References

1. What should i do with the annoying ads? (in Korean) https://www.donga.com/
news/Economy /article/all/20140914/66399483 /1. Accessed 03 Sept 2020

2. N. Korea fakes ‘code signing’ to spread spyware. KBS world radio. http://
world.kbs.co.kr/service /news_view.htm?lang=e&Seq_-Code=119375. Accessed 30
Aug 2020

76

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

B. Kwon et al.

To bypass code-signing checks, malware gang steals lots of certificates. ars
technica. https://arstechnica.com/information-technology/2016/03/to-bypass-
code-signing-checks-malware-gang-steals-lots-of-certificates/. Accessed 30 Aug
2020

Adobe. Electronic Signature Laws and Regulations - South Korea (2020). https://
helpx.adobe.com /sign/using/legality-south-korea.html

Alrawi, O., Mohaisen, A.: Chains of distrust: towards understanding certificates
used for signing malicious applications. In: WWW 2016, Republic and Canton of
Geneva, Switzerland (2016)

Chai, S.-W., Min, K.-S., Lee, J.-H.: A study of issues about accredited certification
methods in Korea. Int. J. Secur. Appl. 9(3), 77-84 (2015)

Code Signing Working Group. Minimum requirements for the issuance and man-
agement of publicly-trusted code signing certificates. Technical report (2016)
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280. RFC Editor (May 2008). http://www.rfc-editor.org/rfc/rfc5280.
txt

Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: Proceedings of the 22Nd USENIX Conference on
Security, SEC 2013, Berkeley, CA, USA, pp. 605-620. USENIX Association (2013)
Falliere, N., O’Murchu, L., Chien, E.: W32.Stuxnet dossier. Symantec Whitepaper
(February 2011)

Geater, J.: How to remove Kraddare. https://www.solvusoft.com/en/malware/
potentially-unwanted-application/kraddare/

Google: Announcing the first SHA1 collision (February 2017)

Kim, D., Kwon, B. J., Dumitras, T.: Certified malware: measuring breaches of
trust in the windows code-signing PKI. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017 (2017)

Kim, D., Kwon, B.J., Kozdk, K., Gates, C., Dumitras, T.: The broken shield: mea-
suring revocation effectiveness in the windows code-signing PKI. In: 27th USENIX
Security Symposium, USENIX Security 2018. USENIX Association (2018)

KLRI: Digital Signature Act, 2017. https://elaw.klri.re.kr/eng_service/lawView.
do7hseq=42625&lang=ENG

Kotzias, P., Bilge, L., Caballero, J.: Measuring PUP prevalence and pup distri-
bution through pay-per-install services. In: Proceedings of the USENIX Security
Symposium (2016)

Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified PUP: abuse in authen-
ticode code signing. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015. ACM, New York (2015)
Kozak, K., Kwon, B.J., Kim, D., Gates, C., Dumitrag, T.: Issued for abuse: mea-
suring the underground trade in code signing certificate. In: 17th Annual Workshop
on the Economics of Information Security (WEIS) (2018)

Kwon, B.J., Srinivas, V., Deshpande, A., Dumitras, T.: Catching worms, trojan
horses and pups: unsupervised detection of silent delivery campaigns. In: 24th
Annual Network and Distributed System Security Symposium, NDSS 2017 (2017)
Microsoft: Microsoft security advisory: update for deprecation of MD5 hashing
algorithm for Microsoft root certificate program, 13 August 2013

Microsoft: Trojan:win32/delf. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Trojan:Win32/Delf

Microsoft: Trojan:win32/kraddare. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Trojan:Win32/Kraddare

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Certified Malware in South Korea 77

Microsoft: ~ Win32/onescan. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?name=win32%2Fonescan

Microsoft: Erroneous VeriSign-issued Digital Certificates Pose Spoofing Hazard
(2001)

Microsoft: Windows Authenticode portable executable signature format
(March 2008). http://download.microsoft.com/download/9/c/5/9c5b2167-8017-
4bae-9fde-d599bac8184a/Authenticode_PE.docx

Morowczynski, M.: SHA-1 deprecation and changing the root CA’s hash algorithm
(2018)

Niemela, J.: It’s Signed, therefore it’s Clean, right? (2010)

NLIC: Electronic Financial Transaction Act, 2017. http://www.law.go.kr/eng/
englLsSc.do?menuld=1&query=electronic+financial+transactions+act&x=0&
y=0#liBgcolor0

Park, H.M.: The web accessibility crisis of the Korea’s electronic government: fatal
consequences of the digital signature law and public key certificate. In: 2012 45th
Hawaii International Conference on System Sciences, pp. 2319-2328. IEEE (2012)
Sebastian, M., Rivera, R., Kotzias, P., Caballero, J.: AVCLASS: a tool for massive
malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds.)
RAID 2016. LNCS, vol. 9854, pp. 230-253. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45719-2_11

Swiat: Flame malware collision attack explained (June 2012)

Wood, M.: Want my autograph? The use and abuse of digital signatures by mal-
ware. In: Virus Bulletin Conference, September 2010, pp. 1-8 (September 2010)
Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement, IMC 2009. ACM
(2009)

