
Lightweight Concolic Testing via Path-Condition
Synthesis for Deep Learning Libraries

Sehoon Kim, Yonghyeon Kim, Dahyeon Park, Yuseok Jeon∗, Jooyong Yi, Mijung Kim†

UNIST, South Korea
{sehoon, yonghyeon, tryness, jsjeon, jooyong, mijungk}@unist.ac.kr

∗Korea University, South Korea
ys jeon@korea.ac.kr

Abstract—Many techniques have been recently developed for
testing deep learning (DL) libraries. Although these techniques
have effectively improved API and code coverage and detected
unknown bugs, they rely on blackbox fuzzing for input genera-
tion. Concolic testing (also known as dynamic symbolic execution)
can be more effective in exploring diverse execution paths,
but applying it to DL libraries is extremely challenging due
to their inherent complexity. In this paper, we introduce the
first concolic testing technique for DL libraries. Our technique
offers a lightweight approach that significantly reduces the
heavy overhead associated with traditional concolic testing. While
symbolic execution maintains symbolic expressions for every
variable with non-concrete values to build a path condition,
our technique computes approximate path conditions by infer-
ring branch conditions via inductive program synthesis. Despite
potential imprecision from approximation, our method’s light
overhead allows for effective exploration of diverse execution
paths within the complex implementations of DL libraries. We
have implemented our tool, PATHFINDER, and evaluated it on
PyTorch and TensorFlow. Our results show that PATHFINDER
outperforms existing API-level DL library fuzzers by achieving
67% more branch coverage on average; up to 63% higher than
TitanFuzz and 120% higher than FreeFuzz. PATHFINDER is also
effective in bug detection, uncovering 61 crash bugs, 59 of which
were confirmed by developers as previously unknown, with 32
already fixed.

Index Terms—Fuzzing, Concolic Testing, Deep Learning Li-
braries

I. INTRODUCTION

Deep Learning (DL) continues to be a dominant approach in
the field of artificial intelligence (AI) and has been extensively
used for building various AI systems. It has become a common
practice to build AI systems using DL libraries such as
PyTorch [1] and TensorFlow [2]. That is, bugs contained in
DL libraries can be propagated to the applications and hurt
the performance of the implemented models [3], [4], [5], [6],
[7]. Accordingly, research on DL library testing has recently
been gaining traction.

To test DL libraries, researchers have developed various
API-level fuzzing techniques to generate inputs for DL library
APIs. These techniques use valid seed inputs obtained from
API usage examples [8] or large language models [9], [10], ex-
tract API input constraints [11], [12], and borrow inputs from

∗The work was done when Yuseok Jeon was at UNIST.
†Corresponding author.

equivalent APIs within the same library [13] or counterpart
APIs across different libraries [14]. Although these techniques
have proven effective in detecting unknown bugs [11], [8],
[13], [9], [10], [12], [14], improving API coverage [13],
[9], [10], and enhancing code coverage [12], [14], [9], [10],
[8], they still suffer from limited code coverage [15]. This
limitation arises because most existing techniques perform
blackbox fuzzing, which does not consider the internal code
structures of the program under test during input generation.
Consequently, low code coverage may affect the bug detection
capability of a fuzzing technique, as bugs cannot be detected
without being executed.

A potential approach to address low code coverage is-
sues can be greybox fuzzing (such as libfuzzer [16]), which
leverages coverage-feedback to guide the input generation
to explore untested parts of the code. If a generated input
increases coverage, it is added to the seed corpus as a mutation
candidate for further fuzzing. However, greybox fuzzing may
still suffer from low coverage. Due to the random nature of
mutation operators, mutated inputs are highly likely to be
rejected by input validity checks and thus often fail to increase
code coverage.

Another possible approach to address low coverage can be
concolic testing (also known as dynamic symbolic execution
or whitebox fuzzing), which systematically explores different
execution paths [17], [18], [19], [20]. Concolic testing can be a
better solution than greybox fuzzing for improving the cover-
age since it maintains path conditions and generates inputs that
traverse the corresponding paths via constraint solving. Hence,
it does not suffer as much as greybox fuzzing from repeated
precondition violations. However, performing concolic testing
on DL libraries still presents significant challenges due to
its well-known drawbacks [21], [22]. First, due to the high
software complexity of DL libraries, concolic testing requires
high computational overhead to handle the symbolic execution
and constraint solving for a large number of paths. Second,
concolic testing has limited support for programs involving
nonlinear expressions in the program (e.g., x * y > w) due
to the difficulty in solving nonlinear constraints. Note that
DL libraries such as PyTorch and TensorFlow heavily use
nonlinear expressions in their implementations.

To fill this gap, we develop a lightweight concolic testing

Kernel Code
(Written in C++)

Python APIs C++ APIs

Fig. 1: A layered struc-
ture of a typical DL li-
brary

def torch.nn.functional.affine_grid(
theta, size, align_corners=None):

...
check that shapes and sizes match
if len(size) == 4:

if (theta.dim() != 3
or theta.shape[-2] != 2
or theta.shape[-1] != 3):

raise ValueError(some_error_msg)
spatial_size = size[-2:]

elif len(size) == 5:

(a) Python API

inline Tensor torch::nn::functional::affine_grid(
const Tensor &theta, const IntArrayRef &size,
bool align_corners = false) {
...
// check that shapes and sizes match
if (size.size() == 4) {
TORCH_CHECK(theta.dim() == 3 &&
theta.size(-2) == 2 &&
theta.size(-1) == 3,
some_error_msg);

} else if (size.size() == 5) {

(b) C++ API

Fig. 2: PyTorch’s affine_grid API in Python and C++

technique designed to systematically explore diverse execution
paths for DL libraries. The key idea of our approach is derived
from how to deal with the path condition, which is the main
vehicle for guiding input generation. Our approach infers an
approximate path condition after running the program while
traditional concolic testing collects an exact path condition
during program execution. As a simple example, consider
the following program: foo(int x) {if (x > 0) {...}}
Suppose we want to infer a path condition x>0 without
collecting the actual one during the program execution. Sup-
pose two different inputs x=-1 and x=1 are generated.
After running the program with these inputs, we observe that
two executions explore two different paths. Based on this
observation, we can infer that x>0 is a feasible candidate
for a path condition. Our technique infers such conditions by
using an off-the-shelf inductive program synthesis tool such
as Duet [23]. A big advantage of our approach is that it
does not require heavyweight instrumentation like traditional
symbolic execution for evaluating symbolic expressions of
each program variable during the whole execution. For our
approach, lightweight instrumentation is sufficient for inferring
path conditions because all we need to check is which branches
are taken like greybox fuzzing.

Another key idea of our approach is that it refines approxi-
mate path conditions towards more precise ones in subsequent
fuzzing iterations. Unlike concolic testing where a generated
input executes exactly the same path for solved constraints,
in our approach, a generated input may execute a different
path for solved constraints due to potential inaccuracy induced
by approximation. Based on observations from the previous
and current executions, our technique keeps refining the path
conditions and exploring new paths.

We implemented our approach in a tool called
PATHFINDER. We conduct extensive experiments on
popular real-world DL libraries, PyTorch, and TensorFlow.
Our results show that PATHFINDER outperforms existing
API-level DL library fuzzers by achieving 67% more branch
coverage on average; up to 63% higher than TitanFuzz and
120% higher than FreeFuzz. PATHFINDER detected 61 new
bugs of which 59 were confirmed by developers.

In summary, this paper makes the following contributions:
● Novel Technique. We propose a novel lightweight concolic

testing technique for deep learning (DL) libraries. Our work

is the first concolic testing approach for generating DL
API inputs by inferring approximate path conditions using
program synthesis.

● Thorough Experiments. We implement our technique in
a tool called PATHFINDER and perform an extensive eval-
uation with PyTorch and TensorFlow, demonstrating its
effectiveness in achieving high code coverage and detecting
previously unknown bugs.

● Replication Package. The artifact for this work, includ-
ing the implementation and experimental data, is publicly
available on GitHub1 and Zenodo2.

II. BACKGROUND AND MOTIVATION

A. Deep Learning Libraries

Figure 1 shows a typical layered structure of a DL library.
Its core parts—which are called kernels—are implemented in
low-level languages like C++. Most users of DL libraries ac-
cess these kernels through high-level APIs, which are provided
in either Python or C++. Figure 2 shows an example of an
API, affine_grid, in Python and C++. These APIs perform
the same input validation checks as shown in Figure 2, then
call the kernel functions when the input is valid. Python APIs
and their C++ counterparts, in principle, implement the same
functionalities, as illustrated in the example code. In this work,
we use C++ APIs for testing to perform a streamlined code
instrumentation of both the kernel code and the C++ APIs. It
is worth noting that our approach is also applicable to Python
APIs through code instrumentation of Python APIs.

B. Concolic Testing

Symbolic execution executes the program with symbolic
input values, instead of concrete input values. It maintains
a symbolic state, which maps variables having non-concrete
values to symbolic expressions, and a path condition PC,
which is a first-order formula over symbolic expressions. Both
the map and PC are updated during the symbolic execution.
At the end of the symbolic execution, solving the PC using a
constraint solver generates a test input that executes the same
path as the symbolic execution.

1https://github.com/starlab-unist/pathfinder-artifact
2https://doi.org/10.5281/zenodo.14753432

https://github.com/starlab-unist/pathfinder-artifact
https://doi.org/10.5281/zenodo.14753432

1 void conv2d (Tensor input, Tensor weight,
2 int* padding, int* dilation, int groups) {
3 // TORCH_CHECK(e): Passes if e is true;
4 // otherwise, throws an exception.
5 TORCH_CHECK(/* b1 */ input.dim() == 4);
6 TORCH_CHECK(/* b2 */ input.dim() == weight.dim());
7 bool forward_checked = weight.size(0) >= groups &&
8 weight.size(0) % groups == 0 &&
9 input.size(1)==weight.size(1) * groups

10 if (forward_checked) {
11 bool kernel_size_correct =
12 input.size(2) + 2*padding[0]
13 >= dilation[0] * (weight.size(2)-1) + 1 &&
14 input.size(3) + 2*padding[1]
15 >= dilation[1] * (weight.size(3)-1) + 1;
16 if (kernel_size_correct)
17 compute_conv2d(input, weight, padding, dilation);
18 } ... }

(a) Simplified code snippet of conv2d API

c1 ∶ input_rank = 4
c2 ∶ ∧ input_rank = weight_rank
c3 ∶ ∧ weight_dim0 ≥ groups
c4 ∶ ∧ weight_dim0% groups = 0

c5 ∶ ∧ input_dim1 = weight_dim1 × groups
c6 ∶ ∧ input_dim2 + 2 × padding0 ≥ dilation0 × (weight_dim2 − 1) + 1

c7 ∶ ∧ input_dim3 + 2 × padding1 ≥ dilation1 × (weight_dim3 − 1) + 1

(b) Exact PC (path condition) for Line 17

ca ∶ input_rank = 4
cb ∶ ∧ weight_rank = 4
cc ∶ ∧ weight_dim0 ≥ groups
cd ∶ ∧ input_dim0 ≥ groups
ce ∶ ∧ 3 − input_dim1 ≥ groups + weight_dim1
cf ∶ ∧ TRUE
cg ∶ ∧ input_dim3 ≥ weight_dim3

(c) Approximate PC inferred by our tool for Line 17

Fig. 3: Motivating Example

Concolic testing, also called dynamic symbolic execution,
maintains both a concrete state and a symbolic state. It
executes a program starting with some random concrete input
and collects path conditions PC1 at conditional statements
along the execution path taken by this input. At the end of this
concolic execution, by negating an individual branch condition
in PC1, a new path condition PC2 can be obtained. Then,
solving PC2 using a constraint solver generates a test input
that follows a different program path. This process is repeated
systematically until all execution paths are explored, or the
time budget expires.

C. Motivating Example

This section motivates our technique by illustrating why
approximate path conditions inferred from our approach
are beneficial for testing DL libraries concolically. Fig-
ure 3a presents partial code of a C++ PyTorch API
torch.nn.functional.conv2d. Suppose we want to test
a statement at Line 17. To reach Line 17, we need an input
that satisfies complex path conditions presented in Figure 3b.

Existing blackbox DL API fuzzers [8], [9], [10], [11], [13],
[14], [24] struggle to generate such inputs because they do not
examine the source code during input generation.

Approaches using constraints extracted from documenta-
tion [11] or source code [12] are also insufficient as a solution,

as they rely on manually defined extraction rules, which often
lead to incomplete constraints.

A traditional concolic testing technique would collect the
exact path conditions expressed with symbolic input values
(e.g., input_rank, weight_dim0, etc.) shown in Figure 3b.
However, even though this exact path condition can be ob-
tained by a symbolic execution engine, concolic testing may
struggle to solve non-linear conditions such as c4, c5, c6, and
c7 in Figure 3b; Concolic testing may not be able to generate
input that explores this path. Moreover, the full path condition
collected beyond Line 17 would be much more complex in
real-world DL libraries. For this reason, adopting concolic
testing to DL libraries is challenging and has never been
addressed in previous research.

Our technique successfully adopts concolic testing to DL
libraries by reducing the heavy overhead required to collect ex-
act path conditions. Instead of extracting exact path conditions
shown in Figure 3b, our technique infers path conditions based
on execution results, as demonstrated in Figure 3c. While some
synthesized path conditions, such as ca to cc, are inferred
precisely, others are often approximate like those from cd to cg
due to our data-driven path-condition inference. Nevertheless,
obtained approximate path conditions can still be effective in
guiding path exploration as will be shown in the next section
and throughout the paper.

III. OVERVIEW

Our approach, PATHFINDER, guides the exploration of
execution paths using path conditions, similar to symbolic ex-
ecution. However, beyond this similarity, PATHFINDER differs
as described below.

A. Inductively Learning Path Conditions

In symbolic execution, path conditions are deductively ex-
tracted. For example, when an if-conditional expression, if
(x > y), is symbolically executed, the current path condition
π is updated into π ∧ (x > y) or π ∧ ¬(x > y), depending
on which branch is taken. More generally, the rules for
updating path conditions are pre-defined for each operation
of the programming language, and at runtime, these rules are
deductively applied.

While the usefulness of symbolic execution has been shown
extensively in the literature, deductively constructing path
conditions also imposes several issues such as incomplete
applicability—e.g., path-condition update rules may not be
available for all operations (e.g., system calls)—and high
computational overhead—updating path conditions typically
involves running instrumented code as in CREST [20] or
using a dedicated interpreter as in KLEE [19]. In contrast,
our approach avoids the aforementioned issues by inductively
learning path conditions from a set of all inputs executed so
far. Below, we describe how we learn path conditions.

Given an execution path π defined as a sequence of branches
b1 ⋅ b2 . . . ⋅ bn taken during the execution of a program, its
path condition π is represented as ⋀n

k=1 ckJbkK where ckJbkK
denotes the condition for branch bk learned as described below.

Suppose we have a set of inputs Ipos and Ineg whose
execution paths share the same prefix b1 ⋅b2 . . .⋅bk−1 but diverge
afterward; that is, every input in Ipos executes b1⋅b2 . . .⋅bk−1⋅bk,
while every input in Ineg executes b1 ⋅ b2 . . . ⋅ bk−1 ⋅ b̄k where b̄
denotes the branch that represents the opposite direction of b.
Under this setting, PATHFINDER learns ckJbkK by synthesizing
a boolean condition that separates Ipos (i.e., positive inputs)
and Ineg (i.e., negative inputs). Thus, ckJbkK is evaluated to
TRUE for all inputs in Ipos and FALSE for all inputs in Ineg .

Due to the inductive nature of our approach, an obtained
path condition is likely to be only an approximation of the
actual path condition. However, as will be explained shortly,
these approximate path conditions are still useful in guiding
the exploration of execution paths.

B. Path Exploration Guided by Approximate Path Conditions

Consider testing the conv2d function shown in Figure 3a.
Suppose that for an initial random input I1, the first pa-
rameter, input, is of the Tensor type with rank 4 (thus,
input.dim() is 4), and the second parameter, weight,
is also a Tensor but with rank 1 (thus, weight.dim()
differs from input.dim()). Given this input, the execution
path takes the if-branch of the first TORCH_CHECK statement
at Line 5 (i.e., b1 is true) and the else-branch of the second
TORCH_CHECK statement at Line 6 (i.e., b2 is false). That
is, I1 takes the path b1 ⋅ b̄2. At this point, only one input I1
is available for learning, and as a result, a typical inductive
synthesizer such as Duet [23] would synthesize TRUE as for
c1Jb1K and c2Jb̄2K. As a result, we obtain TRUE ∧ TRUE as
the approximate path condition π̂ for path b1 ⋅ b̄2. We will use
notation π̂ to denote an approximate path condition and π to
denote a usual non-approximate path condition.

Unlike concolic execution, we do not negate a conjunct
of the path condition to guide the exploration. Instead, we
perform a different path exploration strategy as described
below. In our approach, an approximate path condition may
represent multiple execution paths, as is evident in our run-
ning example; currently, we have only one approximate path
condition, TRUE, capturing all execution paths. To proceed,
PATHFINDER chooses an approximate path condition π̂ from
the available ones and generates an input that satisfies π̂. This
corresponds to exploring the part of the computation tree
satisfying π̂. From the perspective of fuzzing, it can also be
viewed as fuzzing the sub-input space satisfying π̂.

In our example, suppose that PATHFINDER generates input
I2, where the tensor input has a rank of 3, which trivially
satisfies the current approximate path condition of TRUE.
Given this generated input, the execution path takes the else-
branch of the first TORCH_CHECK statement at Line 5 (i.e.,
b1 is false). Based on I1 and I2 taking different branches
of b1, the inductive synthesizer refines c1Jb1K from TRUE to
a stronger condition, say, input_rank > 3. We now have
two approximate path conditions, c1Jb1K∧c2Jb̄2K and ¬c1Jb1K,
which are simplified in our example to input_rank > 3

and input_rank ≤ 3, respectively. We then generate the

next input that satisfies either of the two approximate path
conditions and repeat the process.

As the process continues, PATHFINDER refines the approx-
imate path conditions with increasing accuracy for the follow-
ing two reasons. First, both positive and negative inputs will be
available for more branches, which will have the synthesizer
produce a non-TRUE condition for those branches. Second,
as more examples will be available for each branch, the
synthesizer will be able to produce more precise conditions.

C. Comparison with Other Path Exploration Techniques

We here summarize our approach by comparing it with other
path exploration techniques such as symbolic execution and
fuzzing. In symbolic execution, each feasible path condition
identifies a distinct execution path. Thus, every generated input
is guaranteed to take a new execution path. However, this
guarantee comes at the cost of high computational overhead.
To extract a path condition, symbolic execution typically
requires heavyweight code instrumentation or a custom inter-
preter. In comparison, PATHFINDER requires only lightweight
instrumentation to monitor branch directions during execution.
In exchange for faster execution, PATHFINDER’s inductive
learning may not produce precise path conditions. In other
words, PATHFINDER trades off the precision of path condi-
tions for the efficiency of extracting them.

Our efficiency-over-precision approach is akin to that of
fuzzing. However, unlike typical fuzzing, PATHFINDER uses
learned path conditions to guide the exploration of execution
paths. It can be viewed that we divide the input space into
subspaces based on the learned path conditions; each subspace
corresponds to a distinct approximate path condition.

Overall, PATHFINDER sits between symbolic execution and
fuzzing. Compared to symbolic execution, PATHFINDER gen-
erates inputs at a faster pace. While a fuzzer can generate
inputs more quickly than PATHFINDER since PATHFINDER
invokes an SMT solver to generate new inputs, PATHFINDER
can explore execution paths more effectively by using learned
path conditions. This balance between efficiency and effective-
ness is the key strength of PATHFINDER. At the early phase of
exploration, PATHFINDER can quickly generate inputs cover-
ing new paths without the need for precise path conditions. At
the later phase, PATHFINDER can generate inputs that cover
new paths effectively by using learned path conditions whose
precision has been improved as more inputs are collected.

IV. METHODOLOGY

In this section, we describe the algorithm of PATHFINDER
(§ IV-A) and its optimizations (§ IV-B).

A. Algorithm

Algorithm 1 shows the algorithm of PATHFINDER. It takes
as input a target function to test and returns a bug revealing
input found in the given time budget. Given the target function
f , PATHFINDER automatically generates the precondition φ
of f based on the type information of each parameter. For
example, if a parameter has a tensor type, precondition φ

Algorithm 1 PATHFINDER Algorithm
Input: a target function f
Output: a bug revealing input i; NONE if not found

1: // Step 1: Initialization
2: φ ← PRECONDGEN(f) // f ’s precondition is automati-

cally generated based on the type of each parameter
3: I← ∅ // A set of executed inputs
4: Π̂← {TRUE} // A set of approximate path conditions
5:
6: while time elapsed < time out do
7: // Step 2: Input Generation
8: π̂ ← CHOOSE(Π̂)
9: i← GENINPUT(φ ∧ π̂) // i ⊧ φ ∧ π̂

10:
11: // Step 3: Running f with input i
12: // B: a sequence of executed branches
13: (B, crashed) ← RUNJfK(i)
14: if crashed = TRUE then
15: return i
16: end if
17:
18: // Step 4: Refining Π̂
19: Π̂← REFINE(B, I ∪ {i}, Π̂)
20: I← I ∪ {i}
21: end while
22: return NONE

includes a constraint that all tensor dimensions should be
positive. More details are provided in Section V-A.

While running, PATHFINDER maintains a set of approxi-
mate path conditions defined as follows:

Definition 1 (Approximate Path Condition): Consider an
execution path following a sequence of branches B. Then, the
approximate path condition of this execution path is:

n

⋀
k=1

ckJbkK

where ckJbkK represents the inductively inferred branch con-
dition of the k-th branch bk ∈ B, and n is the length of B.
ckJbkK should satisfy the following properties:
1) ckJbkK should be expressed as a boolean formula over
formal parameters of the target function.
2) Consider a set of all inputs I executed so far and its two
subsets Ipos and Ineg satisfying the following. Ipos contains
all inputs in I that executes a sequence of branches, b1 ⋅ b2 ⋅
. . . ⋅ bk−1 ⋅ bk. Meanwhile, Ineg contains all inputs in I that
executes a sequence of branches, b1 ⋅ b2 ⋅ . . . ⋅ bk−1 ⋅ b̄k, where
b̄ denotes the branch that represents the opposite direction of
b. Then, for all inputs ip in Ipos, applying ckJbkK to ip should
return TRUE, and for all inputs in in Ineg , applying ckJbkK to
in should return FALSE. Note that there can exist only Ipos
without Ineg . In this case, ckJbkK ≡ TRUE.

In the beginning, PATHFINDER initializes the set of ap-
proximate path conditions as Π̂ = {TRUE} (Line 4). Once
PATHFINDER enters the main loop (Lines 6-21), PATHFINDER

b1
b2
b3

{i1}

Π̂

{i1}

 b̄1
b4

b1
b2
b3

{i1}
{i2}

 b̄1
b4

 b1
b2

{i2}
b3 b̄3

{i1} {i3}

{i1, i2} {i1, i2, i3}

Compact

Prefix

Tree

T1 T2 T3

Fig. 4: Efficiently refining approximate path conditions using
compact prefix tree. I and Π̂ represent the set of executed
inputs and the set of approximate path conditions, respectively.

repeats the following three steps: (1) input generation, (2)
running the target function with the generated input, and (3)
refining a set of approximate path condition, Π̂, based on the
execution result. We below describe each step.

1) Input Generation: To generate the next input to execute,
we choose an approximate path condition π̂ from the current
Π̂ (Line 8). In the current implementation, we randomly select
an approximate path condition while using other selection
strategies should be possible. We then use an SMT solver to
generate an input i that satisfies π̂ and the precondition φ of
the target function (Line 9).

2) Running the Target Function: In the next step, we run
the target function f with the generated input i (Line 13).
While executing f , we record the sequence of executed
branches B. If f crashes, we return the crashing input i.

3) Refining the Approximate Path Conditions: Given the
sequence of branches B ≡ b1 ⋅ b2 ⋅ . . . ⋅ bn executed with the
input i, we refine the set of approximate path conditions Π̂
(Line 19). We iterate over each branch bk in B and construct
Ipos and Ineg as described in Definition 1. We then synthesize
a boolean formula ckJbkK that separates Ipos from Ineg . This
way, we obtain an approximate path condition for B and add
it to Π̂.

We also refine the existing approximate path conditions in
Π̂. Consider an approximate path condition π̂ ∈ Π̂ defined as
⋀m

k=1 ckJb
′

kK. We refine ckJb′kK if for all j such that 1 ≤ j ≤
k − 1, b′j is identical to bj ∈ B. That is, the approximate path
condition π̂ and the new input i follow the same branches
up to the (k − 1)-th branch. In this case, we refine ckJb′kK to
ckJbkK, a new branch condition inferred from Ipos and Ineg .
We efficiently perform the aforementioned task as below.

Efficient Data Structure. To efficiently refine approximate
path conditions, we represent the set of approximate path
conditions Π̂ using a compact prefix tree, also known as a
radix tree. Consider an example from Figure 4. It presents a
scenario where PATHFINDER generates three inputs, i1, i2, and
i3 in sequence; see the first row. The second row illustrates,
for each input, how we refine the compact prefix tree (i.e.,
T1→T2→T3). The last row presents a set of approximate path

conditions represented by the compact prefix tree.
Suppose when the target function is run with input i1, it

follows the execution path, b1 ⋅ b2 ⋅ b3. Since we have only
one execution path, the compact prefix tree T1 has only
one root node () and a leaf node (i.e., {i1}). These two
nodes are connected by an edge labeled with the sequence
of branches, b1 ⋅ b2 ⋅ b3. Suppose the next input, i2, deviates
from b1 and takes an opposite direction, b̄1, followed by
b4. We add a new edge labeled with b̄1 ⋅ b4. Since we now
have both positive and negative examples for branch b1, the
synthesizer can infer a non-TRUE condition, c1Jb1K. In the
running example, the updated compact prefix tree T2 has now
two paths whose approximate path conditions are c1Jb1K and
¬c1Jb1K, respectively. Now suppose that we generate the next
input, i3, satisfying ¬c1Jb1K, expecting to execute the path
b̄1 ⋅b4. However, due to the imprecision of the approximate path
condition, the use of i3 may lead to a different execution path,
b1 ⋅ b2 ⋅ b̄3. Accounting for this counter-example, PATHFINDER
refines c1Jb1K to c′1Jb1K which separates the positive examples,
i1 and i3, from the negative example, i2. Also, a new branch
condition c3Jb3K is inferred based on i1 and i3.

B. Other Optimizations

We here describe the other optimization strategies used in
PATHFINDER to improve the efficiency of the testing process.

1) Efficient Use of the Synthesizer: Many modern induc-
tive program synthesizers, including Duet [23], are syntax-
guided—i.e., they synthesize programs that follow a given
grammar—and examples-based—i.e., they synthesize pro-
grams that satisfy a set of input-output examples; in our
setting, the output is a boolean value indicating the direction
of the branch. For efficient use of the synthesizer, we control
the grammar and the number of examples used for synthesis,
as described below.

Staged Synthesis. Duet is a syntax-guided synthesizer; all
synthesized conditions should follow the given grammar. In
general, the more complex the grammar, the more time the
synthesizer takes to find a solution. Using simple grammar can
also be beneficial for input generation, as finding a solution
for a simple path condition is easier. Considering these, we
initially use a simple grammar shown in Figure 5a. Only if
synthesis fails with the simple grammar, we use the more
complex grammar shown in Figure 5b.

Tolerant Branch Condition Refinement. Our main goal is to
efficiently explore execution paths to find bugs, rather than
to synthesize precise branch conditions. As will be shown in
our experimental results, using approximate branch conditions
is often sufficient for exploring new paths and finding bugs.
To avoid spending too much time on synthesizing precise
conditions, we refrain from synthesizing conditions when the
current approximate path condition is already accurate enough.
Consider a branch condition ckJbkK synthesized from positive
inputs Ipos and negative inputs Ineg . Suppose ckJbkK is not
precise and applying it to a new input i returns TRUE while
the actual execution takes the opposite direction. We measure

Cond0 → Cond1 Const → n ∈ {0,1,2,⋯}
∣ ¬Cond1 Var → x ∣ y ∣ ⋯

Cond1 → Var = Const
∣ Var = Var

(a) Level-1 Grammar

Cond0 → Cond1 Expr1 → Const
∣ Cond1 ∧Cond1 ∣ Var
∣ Cond1 ∨Cond1 ∣ Const × Var
∣ ¬Cond1 ∣ Var ÷Const

Cond1 → Expr0 = Expr0 ∣ Var % Const
∣ Expr0 < Expr0 Const → n ∈ {0,1,2,⋯}

Expr0 → Expr1 Var → x ∣ y ∣ ⋯
∣ Expr0 + Expr0
∣ Expr0 − Expr0

(b) Level-2 Grammar

Fig. 5: Grammar for branch conditions

the accuracy of ckJbkK using Ipos and Ineg ∪ {i}, using MCC
(Matthews correlation coefficient). Only if the accuracy is
below a threshold (we empirically use 0.6), we refine ckJbkK.

Sampling Examples. Another factor that affects the synthesis
time is the number of examples used for synthesis. To reduce
the synthesis time, we set a limit N on the number of examples
used for synthesis. In our experiments, we set N to 30.

2) Nondeterministic Branch Pruning: When exploring the
execution paths based on path conditions, an underlying
assumption is that the executed branches are deterministic.
However, this is not always the case. For example, consider
rand()>0. Including such nondeterministic branches in the
path condition can deteriorate the performance of the synthe-
sizer, as demonstrated in § VI-B.

We remove nondeterministic branches from the compact
prefix tree. For example, in Figure 4, if b2 is nondeterministic,
we remove it from the compact prefix tree. To avoid incur-
ring an extra cost of checking nondeterminism, we identify
nondeterministic branches only opportunistically when the
same input is generated again during the testing process;
if different subsequences of branches are observed between
two executions, we identify nondeterministic branches using
a variant of Myers’ algorithm [25] and prune them from the
approximate path condition.

3) Diverse Input Generation: Generating diverse input is
crucial when performing testing. PATHFINDER generates an
input satisfying the inferred approximate path condition π̂.
While we need to generate diverse input satisfying π̂, an SMT
solver such as Z3 we use often generates the same input
when the same π̂ is given. To obtain more diverse inputs,
we strengthen π̂ into π̂ ∧ ψ where ψ is a random constraint.
We construct ψ with a template x ⊕ y, where x and y are
randomly chosen from input parameters, and ⊕ is randomly
selected from {=,≠,<,≤}.

V. EXPERIMENTAL SETUP

To evaluate our technique PATHFINDER, we investigate the
following three research questions:

TABLE I: Type-based precondition generation rules

Param Internal Param Precondition
int n n INT_VAL_MIN ≤ n ≤ INT_VAL_MAX
float r r r ∈ {0, 1, . . . ,FLOAT_VAL_MAX}
Tensor t t_dtype DT_MIN ≤ t_dtype ≤ DT_MAX

t_rank 0 ≤ t_rank ≤ 5
t_dim0 1 ≤ t_dim0 ≤ INT_VAL_MAX
⋯ ⋯

t_dim4 1 ≤ t_dim4 ≤ INT_VAL_MAX

● RQ1: How effective is PATHFINDER in achieving code
coverage?
● RQ2: How do various optimization strategies of
PATHFINDER affect its performance?
● RQ3: How effective is PATHFINDER in detecting bugs?

A. Implementation

We implemented PATHFINDER in C++. Our implemen-
tation includes an automatic test driver generator; given a
target API f of PyTorch or TensorFlow, our tool generates
a test driver that invokes f with the inputs generated by
PATHFINDER. While automatically generating a test driver
for an arbitrary function is challenging, we found that sup-
porting PyTorch/TensorFlow APIs is feasible. To synthesize
branch conditions, we use an inductive program synthesizer,
Duet [23]. For input generation, we use Z3 SMT solver [26].

Precondition Generation. When testing a target API f , the
inputs generated by PATHFINDER should satisfy the precondi-
tions of f , as we described in § IV-A. Depending on the type
information of f ’s parameters, we enforce different constraints
on the inputs, as shown in Table I. For example, given an
integer type parameter n, we enforce that n’s value should
be within the range of INT_VAL_MIN and INT_VAL_MAX.
For a floating-point type parameter r, we restrict its value
to be one of the predefined floating-point constants. This is
to expedite input generation using an SMT solver. For the
Tensor type, we enforce constraints on the tensor’s data type,
rank, and dimensions. Once values satisfying these constraints
are generated, we put them into a Tensor object and pass it
to the target API.

B. Baseline Tools

We compare PATHFINDER with five existing techniques:
FreeFuzz [8], DeepREL [13], TitanFuzz [9], ACETest [12],
and IvySyn [24]. We selected FreeFuzz, DeepREL, and Titan-
Fuzz because they are state-of-the-art API-level fuzzing tools
for DL libraries like PATHFINDER. Although a recent work
FuzzGPT [10] is also an API-level fuzzer, we could not include
it in our evaluation because the tool is not publicly available.
We also included ACETest and IvySyn, which target kernel
functions of DL libraries. These tools require test drivers
for kernel functions and we use PATHFINDER’s test driver
generator to prepare them.

C. DL Libraries and APIs

We consider both PyTorch [1] (v2.2) and TensorFlow [2]
(v2.16) since they are the two most popular DL libraries
and are widely studied in the literature. For comparison with

TABLE II: Number of target APIs for PATHFINDER and
the baselines. PATHFINDER* denotes target APIs selected for
comparison with the baselines.

PATHFINDER PATHFINDER* FreeFuzz DeepREL TitanFuzz ACETest IvySyn

PyTorch 946 661 585 585 649 379† 340†

TensorFlow 517 517 135 137 273 486 -

IvySyn, we use PyTorch v1.11, which is supported by IvySyn’s
replication package because it does not support PyTorch v2.

Target APIs. Table II lists the number of target APIs
used in our experiments. Our test driver generators suc-
cessfully create test drivers for 946 C++ APIs in Py-
Torch and 517 C++ APIs in TensorFlow, respectively.
For the comparison evaluation with the baselines, we se-
lected 661 PyTorch and 517 TensorFlow APIs (denoted as
“PATHFINDER*” in Table II) having exact Python counter-
part APIs (e.g., torch::nn::functional::max_pool1d in
C++ and torch.nn.functional.max_pool1d in Python).
We obtained each baseline’s target APIs from its replication
package. For a fair comparison, we extracted those common
APIs shared by both “PATHFINDER*” and the baseline. For
example, as shown in Table II, we collected 585 common Py-
Torch APIs shared between PATHFINDER*’s and DeepREL’s
target APIs. For FreeFuzz-PyTorch, we used the same set of
target APIs from DeepREL because it shares the same fuzzing
engine as FreeFuzz and supports a larger set of APIs.

For ACETest and IvySyn, their PyTorch target functions
indicated by † in Table II are internal kernel functions rather
than high-level APIs. We collected the kernel functions used
in the replication packages of ACETest and IvySyn and
considered those functions for which our driver generator
could successfully produce drivers. In RQ1, out of IvySys’s
340 targets, we used 241 functions that terminate without a
crash because IvySyn cannot measure coverage when a crash
occurs. Finally, we excluded TensorFlow for IvySyn because
its target internal functions lack the type information required
by our driver generator.

D. Experimental Environment

Environment. We conducted our experiments on two ma-
chines. For the PyTorch experiment, we used a machine
equipped with Intel Xeon Platinum 8468 CPU and 4 NVIDIA
RTX A6000 GPUs. For the TensorFlow experiment, we used
a machine with AMD EPYC 7763 CPU and 8 NVIDIA RTX
A6000 GPUs. We also ensured each fuzzing task was allocated
a single CPU core during the experiments.

Fuzzing budget. By default, we use a 20-minute fuzzing
budget per target API. Unlike PATHFINDER that does not
require any preparation process before fuzzing, all baseline
techniques except IvySyn require additional preparation time.
This includes gathering seed inputs (for FreeFuzz, DeepREL,
and TitanFuzz) or extracting input constraints (for ACETest).
In this experiment, we exclude such preparation time for all
baselines from the time budget. Meanwhile, we conduct the
coverage analysis in RQ1 and the ablation study in RQ2 five
times and report the average number.

� � � � � � �
 � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

	 � � � �

 � � � �

� � � � � � �
��

�	
��

��

�

��
��

�

� � 	 � � � � � � �
 � � �

� � � � � � �
 	
 �

� �

 � � � �

(a) DeepREL vs PATHFINDER

� � � � � � �
 � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

	 � � � �

 � � � �

� � � � � �

� � � � � � �

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � 	
 � � �

� � 	 � �
 �
 � �

(b) TitanFuzz vs PATHFINDER

� � � � � � �
 � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

	 � � � �

 � � � �

� � � � � � �

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � � 	 � �

� �
 � � � �

(c) FreeFuzz vs PATHFINDER

� � � � � � � 	 � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � �

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � �
 	
 �

� � � � �
 � �

(d) ACETest vs PATHFINDER

� � � � � � � � � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � �

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � �
 	 �
 � � � �

� � � � � � �

(e) IvySyn vs PATHFINDER

Fig. 6: Results of RQ1 for PyTorch

Bug Detection. We manually analyzed each detected bug and
identified the unique ones. In particular, we focus on finding
crash bugs in our experiments.

VI. EXPERIMENTAL RESULTS

A. RQ1: Branch Coverage Analysis

To evaluate the effectiveness of PATHFINDER in exploring
diverse program paths, we measure branch coverage, a com-
mon metric for evaluating the effectiveness of test generation
tools. To ensure a fair comparison without bias towards any
specific API language (i.e., C++ or Python), we measure
coverage of only C++ kernel codes.

The results are shown in Figures 6 and 7 where we compare
PATHFINDER with the five baselines mentioned in §V-B:
FreeFuzz, DeepREL, TitanFuzz, ACETest, and IvySyn. The
X-axis shows the elapsed time in seconds, and the Y-axis
shows the number of covered branches across all target APIs.
A coordinate (x, y) indicates that at time x, y branches are
covered across all target APIs. We repeat the experiment five
times for each target API and present the mean results in
the figure, along with 95% confidence intervals illustrated as
shades around the mean line.

As for the time budget, we set it to 20 minutes for each pair
of a tool and an API of PyTorch. For TensorFlow, we could
not identify a clear winner in the initial 20 minutes, so we
extended the time budget to 60 minutes.

Our results show that PATHFINDER substantially outper-
forms all existing state-of-the-art tools we compare with. We
below discuss notable observations from the results.

� �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � � � � 	

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � �
 	
 �

� �

 � � � �

(a) DeepREL vs PATHFINDER

� � � � � � � � � 	 � � � � � � � � � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � � � � 	

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � 	
 � � �

� � 	 � �
 �
 � �

(b) TitanFuzz vs PATHFINDER

� �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � � � � 	

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � � 	 � �

� �
 � � � �

(c) FreeFuzz vs PATHFINDER

� � � � � � � � � 	 � � � � � � � � � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � � � � 	

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � �
 	
 �

� � � � �
 � �

(d) ACETest vs PATHFINDER

Fig. 7: Results of RQ1 for TensorFlow. IvySyn is excluded
for TensorFlow as discussed in § V-C.

PyTorch vs. TensorFlow. While PATHFINDER outperforms
all baselines, its early-stage performance for TensorFlow is
not as good as for PyTorch. This seems related to the fact
that TensorFlow uses nondeterministic branches more fre-
quently than PyTorch. The average number of nondeterministic
branches found in PyTorch APIs is 103.4, while in TensorFlow
APIs, it is 2571.3, which is about 25 times larger. Despite
the slow start, PATHFINDER eventually covers more branches
than the baselines in TensorFlow as well, and the gap between
PATHFINDER and the baselines widens over time.

Unit Testing vs. Integration Testing. Unlike PATHFINDER
that tests an individual target API, TitanFuzz, using an LLM
(Large Language Model), constructs a sequence of API calls
that includes the target API. This can be viewed as a form of
integration testing. In our experimental results, we account for
all executed branches, whether or not they belong to the target
API. Nevertheless, PATHFINDER still outperforms TitanFuzz,
demonstrating the effectiveness of our technique in exploring
diverse execution paths.

Similar to TitanFuzz, DeepREL tests not only the target
API (e.g., AdaptiveAvgPool3d) but also other APIs (e.g.,
AdaptiveMaxPool3d) that are considered functionally simi-
lar to the target API. DeepREL effectively reuses the same
input to test multiple APIs. PATHFINDER achieves higher
branch coverage than DeepREL, without exploiting such ad-
ditional information on API similarity. Note that exploiting
API similarity and our efficient path exploration algorithm are
orthogonal, and combining them could further improve the
performance of PATHFINDER.

Fully automatic vs. Semi-automatic. ACETest, similar to
PATHFINDER, leverages path constraints for input generation.
However, unlike PATHFINDER that infers path condition fully
automatically, ACETest relies on manually defined rules for
extracting path constraints. Despite these manual efforts re-
quired by ACETest, PATHFINDER outperforms for both Py-

� � � � � � �
 � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

	 � � � �

 � � � �

� � � � � �

� � � � � �

� � � � � � �
��

�	
��

��

�

��
��

�

� � 	 � � � � � � �
 � � �

� � � � � �
 � 	
 �

� � � � � �
 � 	
 � � � � � � � � �

� � � � � �
 � 	
 � � � � � � � � � �
 	

(a)
� � � � � � � 	 � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � � � � 	

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � �
 � 	
 �

� � � � � �
 � 	
 � � � � � � � � �

� � � � � �
 � 	
 � � � � � � � � � �
 	

(b)
Fig. 8: Results of RQ2 on our two optimization strategies,
nondeterministic branch pruning (NBP) and staged synthesis

Torch and TensorFlow with the performance gap being particu-
larly significant for PyTorch. This gap is mainly due to the lim-
itation of ACETest’s incomplete manual rules. For example, its
rules cannot handle PyTorch’s certain code components (e.g.,
data type check of a tensor like tensor.is_complex()).
This leaves many branches uncovered by ACETest. Although
adding new rules could potentially increase coverage, doing
so would require significant additional manual efforts. In
contrast, PATHFINDER can achieve high coverage without
manual efforts.

RQ1: PATHFINDER achieves higher branch coverage than
state-of-the-art DL testing tools, demonstrating the effective-
ness of our technique in exploring diverse execution paths.

B. RQ2: Ablation Study

To evaluate the effectiveness of PATHFINDER’s optimiza-
tion strategies, we conduct an ablation study by comparing
PATHFINDER with two variants: PATHFINDER without nonde-
terministic branch pruning (NBP) and PATHFINDER without
staged synthesis. For this ablation study, we use all available
target APIs for PyTorch and TensorFlow, i.e., 946 PyTorch
APIs and 517 TensorFlow APIs (see Table II) with the 20-
minute time budget for each target API.

Note that if we keep nondeterministic branches without
pruning, Duet, the synthesizer we use, always fails because
the same input appears both in the positive and negative
examples. Rather than considering such a clearly inferior
variant, we here compare PATHFINDER with an alternative
way to handle nondeterministic branches; instead of pruning
a nondeterministic branch, we set TRUE to its condition. For
example, in Figure 4, if b1 is nondeterministic, we set c1Jb1K
to TRUE while keeping its both branches. This is different
from the original PATHFINDER, which removes b1 from the
compact prefix tree.

As for disabling staged synthesis, we experiment with a
variant of PATHFINDER that directly employs Level-2 gram-
mar without attempting Level-1 grammar (refer to Figure 5 for
these grammars). Recall that Level-1 grammar is simpler than
Level-2 grammar, and it is used in the original PATHFINDER
to quickly find a solution when possible.

Figure 8 shows the results. More branches are covered when
PATHFINDER employs both NBP and staged synthesis than
when it does not. As mentioned, TensorFlow APIs have more

TABLE III: Summary of bugs detected by PATHFINDER

DL Library Total Confirmed Fixed Rejected

PyTorch 43 41 23 2
TensorFlow 18 18 9 0

Total 61 59 32 2

TABLE IV: Type of bugs detected by PATHFINDER

DL Library Bug Type Total
Heap Buffer

Overflow
Stack

Overflow
Segfault FPE

Internal
Assertion

Pytorch 7 2 9 4 19 41
Tensorflow 1 0 1 0 16 18

Total 8 2 10 4 35 59

6 4 2 10 1 8 2 3 20 7 4 22 11 9

PathFinder DeepREL TitanFuzz FreeFuzz ACETest IvySyn

C++ : 1
IS : 4

NC : 1

Py : 1
IS : 1

C++ : 1
NC : 9

NT : 1
C++ : 1

IS : 5
Impl : 1

NC : 1

Py : 1
IS : 2

C++ : 3
Impl : 1

NC : 16

IS : 3
Impl : 1

IS : 1
Impl : 2

NC : 19

IS : 5
Impl : 4

(a) PyTorch

51 2 2 2 31 6 1 9

PathFinder DeepREL TitanFuzz FreeFuzz ACETest

NC : 1
Py : 2
IS : 1

Impl : 1 
NT : 1

NC : 2

 

Py : 1
NT : 1

 

NC : 1 Py : 1
IS : 1

Impl : 1

C++ : 3
NC : 3

Py : 2
IS : 6

Impl : 1

(b) TensorFlow
Fig. 9: Bugs detected by PATHFINDER and baselines

nondeterministic branches than PyTorch APIs, which explains
why NBP is more effective in TensorFlow than in PyTorch.

RQ2: PATHFINDER performs better when both optimiza-
tion strategies, nondeterministic branch pruning and staged
synthesis, are employed than when either is omitted. This
demonstrates the effectiveness of our optimization strategies.

C. RQ3: Bug Detection Analysis

Table III summarizes the statistics of bugs detected by
PATHFINDER. For this experiment, we use all available tar-
get APIs for PyTorch and TensorFlow in our benchmark.
PATHFINDER detected 61 bugs, with 59 of them confirmed as
previously unknown by developers. Among these confirmed
bugs, 32 have been fixed. Two bug reports were rejected as
false alarms. Notably, for 21 of the 32 fixed bugs, patches
were applied in the kernel functions, which demonstrates that
PATHFINDER effectively explores deep and diverse execution
paths.

Besides, Table IV presents the distribution of different types
of bugs for all confirmed bugs. Segfault and FPE refer to
Segmentation Fault and Floating Point Exception, respectively.
The results show that PATHFINDER detects various types of
severe bugs, such as heap buffer overflow and stack overflow,
which might also lead to security vulnerabilities.

Figure 9 presents the comparison results with the baselines.
For the comparison, we consider the set of common target

TABLE V: Total number of inputs generated by each tool and their valid input rates.
DL Lib PyTorch TensorFlow

Tool FreeFuzz Ours ACETest Ours DeepREL Ours TitanFuzz Ours IvySyn Ours FreeFuzz Ours ACETest Ours DeepREL Ours TitanFuzz Ours

Total 163,679 K 27,569 K 164,807 K 39,761 K 110,903 K 26,082 K 1,611 K 30,868 K 200,715 K 21,464 K 42,667 K 5,191 K 139,548 K 17,545 K 25,579 K 5,434 K 1,419 K 15,060 K

Valid 24,955 K 15,780 K 98,762 K 25,107 K 98,858 K 15,248 K 1,123 K 17,911 K 194,746 K 10,602 K 36,349 K 1,984 K 49,130 K 3,237 K 20,239 K 2,062 K 886 K 2,899 K

Ratio (%) 15.24 57.24 59.93 63.14 89.14 58.46 69.68 58.02 97.03 49.40 85.19 38.22 35.21 18.36 79.13 37.95 62.46 19.25

Branch 41,850 92,208 26,047 69,772 85,859 91,314 59,917 97,521 24,322 47,114 27,839 51,237 68,200 72,462 40,056 52,181 59,063 63,953

APIs and kernel functions listed in Table II for each baseline.
For fair analysis, we use the top frame information of a crash’s
stack trace. We consider a crash as the same bug if the top
frame of that crash is identical to that of the compared tool.

The results of Figure 9 show that PATHFINDER detects
significantly more unique bugs than the compared tool—
PATHFINDER uniquely detects 76 bugs (66 for PyTorch and 10
for TensorFlow) while it misses only 38 bugs (19 for PyTorch
and 19 for TensorFlow).

We further analyze why those unique bugs have been missed
by the compared tool (i.e., other tools for PATHFINDER and
PATHFINDER for other tools). We classified them into five
categories, NC, C++/Py, IS, Impl, and NT, and tagged in
Figure 9. NC happens when the crash point is not covered
by the compared tool due to its limited code coverage. This
is the most common category for the unique bugs detected
by PATHFINDER, which demonstrates PATHFINDER’s high
path exploration capability. C++/Py includes language-specific
bugs that are manifested exclusively in either the C++ or
Python API. These bugs occur due to the inconsistent im-
plementation between the C++ and Python APIs even though
both are designed to function identically in principle, as shown
in Figure 2. IS refers to those bugs missed by the compared
tool due to its limited input space. For instance, despite
PATHFINDER’s high path exploration capability, it misses
bugs arising from edge cases (e.g., extreme values) existing
the outside of the input space defined in Table I. Similarly,
DeepREL, FreeFuzz, and IvySyn did not generate rarely used
inputs in practice (e.g., quantized integers). Impl includes
those bugs missed by the compared tool due to its limitation
of implementation design. For example, PATHFINDER, Deep-
REL, FreeFuzz, and IvySyn terminate their fuzzing campaign
upon encountering a crash, preventing further discovery of
additional bugs within the same API. Finally, NT refers to
bugs located in non-target APIs. As discussed in § VI-A,
DeepREL and TitanFuzz construct a sequence of APIs, so
PATHFINDER cannot detect bugs that are executed exclusively
by the compared tool.
RQ3: PATHFINDER is highly effective in detecting severe
bugs that require deep program exploration, particularly within
kernel functions, and detects significantly more unique bugs
that are not detected by the baselines.

VII. DISCUSSION AND THREATS TO VALIDITY

A. Comparison with Greybox Fuzzing and Concolic Testing

We have shown PATHFINDER’s effectiveness for testing DL
libraries; it outperforms existing state-of-the-art tools for DL

� � � � � � �
 � � � � � �

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

	 � � � �

 � � � �

� � � � � �

� � � � � � �

��
�	

��
��

�
��

��
�

� � 	 � � � � � � �
 � � �

� � � � � � � � � 	 �

�
 � �
 � � � 	 �

� � �
 � � � 	 �

Fig. 10: Branch coverage of PATHFINDER compared with
greybox fuzzing (libfuzzer) and concolic testing (Eclipser)

library testing. In this section, we discuss how PATHFINDER
compares with greybox fuzzing and concolic testing, two
representative non-blackbox testing techniques. For greybox
fuzzing, we used libfuzzer [16], a well-known greybox API
fuzzer. For concolic testing, we used Eclipser [27], the only
concolic-execution-based tool that we could successfully run
on PyTorch. Eclipser is a state-of-the-art binary-based fuzzing
tool that iterates between concolic testing and greybox fuzzing,
outperforming KLEE [19] in terms of code coverage [27]. We
ran PATHFINDER, libfuzzer, and Eclipser on 661 C++ APIs
of PyTorch (denoted as “PATHFINDER*” in Table II) with a
20-minute time budget.

Figure 10 shows the results. PATHFINDER substantially
outperforms both Eclipser and libfuzzer. The poor performance
of Eclipser seems to be due to the slow runtime, a typi-
cal drawback of concolic testing. While libfuzzer performs
better than Eclipser, it still lags behind PATHFINDER. This
result suggests that PATHFINDER’s path exploration guided
by path conditions is more effective than the conventional
coverage-guided approach of libfuzzer. Despite being guided
by coverage feedback, greybox fuzzing struggles to exercise
new branches when code coverage does not change over input
mutations. This means that coverage feedback is only useful
when the mutated input explores a new execution path. In
contrast, PATHFINDER generates inputs capable of penetrating
an approximate branch condition and exploring new paths.

B. Input Validity
We have shown throughout the paper that PATHFINDER

achieves substantially higher branch coverage than state-of-
the-art tools. PATHFINDER achieves such outstanding perfor-
mance despite the fact that our technique is agnostic to input
validity; our path-condition synthesis technique does not aim
to rule out invalid inputs, but aims to explore diverse paths.

Table V shows (1) how many inputs each tool gener-
ated (“Total”), (2) the percentage of valid inputs (“Valid”

and “Ratio (%)”), and (3) the number of covered branches
(“Branch”). We observe PATHFINDER covers more branches
than the other tools even when its valid-input ratio is lower.
This result suggests the effectiveness of fuzzing tools is not
solely determined by the ratio of valid inputs. PATHFINDER’s
ability to generate inputs that explore diverse execution paths
appears to be a more critical factor in achieving high branch
coverage.

C. Threats to Validity

Generality. There is a potential threat to the generality of
our approach. To address this, we evaluated PATHFINDER
on the two most representative DL libraries: PyTorch and
TensorFlow, which are widely used in literature.

Bug detection. When counting new bugs detected by
PATHFINDER and the baselines, we ensured all detected bugs
were reproducible. Additionally, in our experiments, we only
consider crashes as bugs and do not consider non-crash bugs
such as computation bugs. These bugs may be detected with
differential testing used in prior work [8], [28].

VIII. RELATED WORK

A. Deep Learning Library Fuzzing

API-level fuzzing. FreeFuzz [8] mines usage examples of
DL APIs from open source and mutates inputs based on
the observed values in the wild. DeepREL [13] and TEN-
SORSCOPE [14] extract related APIs within the same li-
brary [13] and counterpart APIs across different libraries [14],
respectively, and borrow test inputs from other APIs to gen-
erate inputs for target APIs. TitanFuzz [9] and FuzzGPT [10]
leverage large language models to generate a valid API
sequence involving a target API’s invocation. IvySyn [24]
performs type-aware mutation-based fuzzing on kernel code.

DocTer [11] and ACETest [12] extract input constraints for
each API parameter to generate inputs that pass the input
validity checks. They focus on extracting input constraints
before the fuzzing phase and perform fuzzing by generating
random inputs satisfying those constratins.

Although all the aforementioned techniques have shown
effectiveness in testing DL library APIs, they either perform
blackbox fuzzing without considering the internal source
code [8], [9], [10], [11], [13], [14], [24] or requires manually
annotated rules to derive input preconditions [11] or path
conditions [12]. In contrast, our technique leverages execution
path feedback during input generation and does not require
manual efforts.

Model-level fuzzing. Model-level DL library or compiler
testing aims to detect integration bugs of DL operators by test-
ing computation graphs. Earlier studies [7], [29], [30] directly
use or mutate existing trained models. Recent research [28],
[31], [32], [33] generates computational graphs for fuzzing
to cover more DL operators. These newer approaches handle
constraints between computation nodes by either inserting
reshape operators [28], using handcrafted specification [31],
leveraging program synthesis [32], or generating DL models

with diverse layer API calls [33]. Our work performs API-
level fuzzing and focuses on fuzzing a single API in isolation
to thoroughly test and explore diverse API behaviors.

B. Concolic Testing

Concolic testing has been extensively studied for
decades [21], [22], [34]. Our work relates to those techniques
that are aimed at addressing the overhead from heavyweight
instrumentation and complex constraint-solving challenges
associated with concolic testing. One well-established
strategy for addressing this challenge is hybrid fuzzing,
which combines concolic testing with greybox fuzzing [27],
[35], [36], [37]. This approach mitigates the overhead
issue by reducing the computational cost through the
alternating use of concolic testing and greybox fuzzing.
In contrast, PATHFINDER addresses this overhead issue in
a fundamentally different way. First, PATHFINDER does
not require symbolic execution to obtain path conditions,
thus it eliminates the need for heavyweight instrumentation.
Instead, PATHFINDER requires as light instrumentation as
greybox level to track executed branches. Additionally,
PATHFINDER mitigates the constraint-solving overhead by
using approximate path conditions rather than exact ones.
This trade-off between precision and efficiency proves to
be effective, as demonstrated by our experimental results in
fuzzing deep learning libraries.

IX. CONCLUSION

This paper presents a novel lightweight concolic testing
technique for deep learning (DL) libraries. Unlike previous
techniques that perform blackbox fuzzing without considering
the internal structure of the program under test during input
generation, our approach explores diverse execution paths
by inferring approximate path conditions. While traditional
concolic testing requires heavy overhead for maintaining and
interpreting symbolic expressions along the execution path,
our technique quickly synthesizes branch conditions based on
the observed behaviors of program executions. The evaluation
of our tool, PATHFINDER on PyTorch and TensorFlow, shows
that PATHFINDER significantly outperforms existing API-level
DL fuzzing techniques by achieving higher branch coverage
and detecting more unique bugs. PATHFINDER found 61 new
crash bugs of which 59 were confirmed by developers.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their invaluable feed-
back. This work is supported by the National Research Foun-
dation of Korea (NRF) grants funded by the Korea govern-
ment (MSIT) (No. RS-2022-NR069867, RS-2022-NR066503,
RS-2021-NR064479, RS-2021-NR060080) and the Institute
for Information & Communications Technology Planning &
Evaluation (IITP) grants funded by the Korea government
(MSIT) (No. RS-2024-00337414, RS-2024-00437306, RS-
2020-II201336).

REFERENCES

[1] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An
Imperative Style, High-Performance Deep Learning Library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[3] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An empir-
ical study on program failures of deep learning jobs,” in Proceedings of
the 42nd International Conference on Software Engineering (ICSE ’20).
IEEE/ACM, July 2020.

[4] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2019. New York, NY, USA: Association for Computing Machinery,
2019, p. 510–520.

[5] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensorflow program bugs,” in Proceedings of the
2020 International Symposium on Software Testing and Analysis, ser.
ISSTA 2018, 07 2018, pp. 129–140.

[6] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of real faults in deep learning systems,” in
Proceedings of 42nd International Conference on Software Engineering,
ser. ICSE ’20. ACM, 2020.

[7] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: Cross-backend
validation to detect and localize bugs in deep learning libraries,” in Pro-
ceedings of the 41st International Conference on Software Engineering,
ser. ICSE ’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 1027–1038.

[8] A. Wei, Y. Deng, C. Yang, and L. Zhang, “Free lunch for testing:
fuzzing deep-learning libraries from open source,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 995–1007. [Online]. Available: https://doi.org/10.1145/3510003.
3510041

[9] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries
via large language models,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2023. New York, NY, USA: Association for Computing Machinery,
2023, p. 423–435. [Online]. Available: https://doi.org/10.1145/3597926.
3598067

[10] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang, “Large
language models are edge-case generators: Crafting unusual programs
for fuzzing deep learning libraries,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3597503.3623343

[11] D. Xie, Y. Li, M. Kim, H. V. Pham, L. Tan, X. Zhang, and
M. W. Godfrey, “Docter: documentation-guided fuzzing for testing
deep learning api functions,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2022. New York, NY, USA: Association for Computing Machinery,
2022, p. 176–188. [Online]. Available: https://doi.org/10.1145/3533767.
3534220

[12] J. Shi, Y. Xiao, Y. Li, Y. Li, D. Yu, C. Yu, H. Su, Y. Chen, and W. Huo,
“Acetest: Automated constraint extraction for testing deep learning
operators,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2023. New

York, NY, USA: Association for Computing Machinery, 2023, p.
690–702. [Online]. Available: https://doi.org/10.1145/3597926.3598088

[13] Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning
libraries via automated relational api inference,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2022. New York, NY, USA: Association for Computing Machinery,
2022, p. 44–56. [Online]. Available: https://doi.org/10.1145/3540250.
3549085

[14] Z. Deng, G. Meng, K. Chen, T. Liu, L. Xiang, and C. Chen,
“Differential testing of cross deep learning framework APIs: Revealing
inconsistencies and vulnerabilities,” in 32nd USENIX Security Sympo-
sium (USENIX Security 23). Anaheim, CA: USENIX Association,
Aug. 2023, pp. 7393–7410. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity23/presentation/deng-zizhuang

[15] J. Chen, Y. Liang, Q. Shen, J. Jiang, and S. Li, “Toward
understanding deep learning framework bugs,” ACM Trans. Softw.
Eng. Methodol., vol. 32, no. 6, sep 2023. [Online]. Available:
https://doi.org/10.1145/3587155

[16] “libfuzzer – a library for coverage-guided fuzz testing.” 2015. [Online].
Available: http://llvm.org/docs/LibFuzzer.html

[17] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” ser. PLDI ’05. New York, NY, USA: ACM, 2005,
pp. 213–223. [Online]. Available: http://doi.acm.org/10.1145/1065010.
1065036

[18] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” ser. ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263–
272. [Online]. Available: http://doi.acm.org/10.1145/1081706.1081750

[19] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USA: USENIX Association,
2008, p. 209–224.

[20] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’08. USA: IEEE Computer
Society, 2008, p. 443–446. [Online]. Available: https://doi.org/10.1109/
ASE.2008.69

[21] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” vol. 56, no. 2. New York, NY, USA: Association
for Computing Machinery, feb 2013, p. 82–90. [Online]. Available:
https://doi.org/10.1145/2408776.2408795

[22] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, may 2018. [Online]. Available: https://doi.org/10.1145/3182657

[23] W. Lee, “Combining the top-down propagation and bottom-up
enumeration for inductive program synthesis,” vol. 5, no. POPL. New
York, NY, USA: Association for Computing Machinery, jan 2021.
[Online]. Available: https://doi.org/10.1145/3434335

[24] N. Christou, D. Jin, V. Atlidakis, B. Ray, and V. P. Kemerlis,
“IvySyn: Automated vulnerability discovery in deep learning
frameworks,” in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
2383–2400. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/christou

[25] E. W. Myers, “An o(nd) difference algorithm and its variations,” Algo-
rithmica, vol. 1, pp. 251–266, 1986.

[26] L. De Moura and N. Bjørner, “Z3: an efficient smt solver,” in Pro-
ceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, p. 337–340.

[27] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 736–747.

[28] J. Gu, X. Luo, Y. Zhou, and X. Wang, “Muffin: testing deep
learning libraries via neural architecture fuzzing,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 1418–1430. [Online]. Available: https://doi.org/10.1145/3510003.
3510092

[29] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library
testing via effective model generation,” in Proceedings of the 2020 28th
ACM Joint Meeting on European Software Engineering Conference and

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/
https://doi.org/10.1145/3510003.3510041
https://doi.org/10.1145/3510003.3510041
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597503.3623343
https://doi.org/10.1145/3533767.3534220
https://doi.org/10.1145/3533767.3534220
https://doi.org/10.1145/3597926.3598088
https://doi.org/10.1145/3540250.3549085
https://doi.org/10.1145/3540250.3549085
https://www.usenix.org/conference/usenixsecurity23/presentation/deng-zizhuang
https://www.usenix.org/conference/usenixsecurity23/presentation/deng-zizhuang
https://doi.org/10.1145/3587155
http://llvm.org/docs/LibFuzzer.html
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1081706.1081750
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3434335
https://www.usenix.org/conference/usenixsecurity23/presentation/christou
https://www.usenix.org/conference/usenixsecurity23/presentation/christou
https://doi.org/10.1145/3510003.3510092
https://doi.org/10.1145/3510003.3510092

Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2020, 2020.

[30] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee:
automated testing for deep learning frameworks,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’20. New York, NY, USA: Association
for Computing Machinery, 2021, p. 486–498. [Online]. Available:
https://doi.org/10.1145/3324884.3416571

[31] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang,
“Nnsmith: Generating diverse and valid test cases for deep learning
compilers,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 530–543. [Online].
Available: https://doi.org/10.1145/3575693.3575707

[32] J. Liu, J. Peng, Y. Wang, and L. Zhang, “Neuri: Diversifying dnn
generation via inductive rule inference,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
657–669. [Online]. Available: https://doi.org/10.1145/3611643.3616337

[33] M. Li, J. Cao, Y. Tian, T. O. Li, M. Wen, and S.-C. Cheung, “Comet:
Coverage-guided model generation for deep learning library testing,”
ACM Trans. Softw. Eng. Methodol., vol. 32, no. 5, jul 2023. [Online].
Available: https://doi.org/10.1145/3583566

[34] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A survey for
roadmap,” ACM Comput. Surv., vol. 54, no. 11s, sep 2022. [Online].
Available: https://doi.org/10.1145/3512345

[35] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” 01 2016.

[36] L. Borzacchiello, E. Coppa, and C. Demetrescu, “Fuzzolic: Mixing
fuzzing and concolic execution,” Comput. Secur., vol. 108, no. C, sep
2021. [Online]. Available: https://doi.org/10.1016/j.cose.2021.102368

[37] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A
practical concolic execution engine tailored for hybrid fuzzing,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 745–761. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

https://doi.org/10.1145/3324884.3416571
https://doi.org/10.1145/3575693.3575707
https://doi.org/10.1145/3611643.3616337
https://doi.org/10.1145/3583566
https://doi.org/10.1145/3512345
https://doi.org/10.1016/j.cose.2021.102368
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

	Introduction
	Background and Motivation
	Deep Learning Libraries
	Concolic Testing
	Motivating Example

	Overview
	Inductively Learning Path Conditions
	Path Exploration Guided by Approximate Path Conditions
	Comparison with Other Path Exploration Techniques

	Methodology
	Algorithm
	Input Generation
	Running the Target Function
	Refining the Approximate Path Conditions

	Other Optimizations
	Efficient Use of the Synthesizer
	Nondeterministic Branch Pruning
	Diverse Input Generation

	Experimental Setup
	Implementation
	Baseline Tools
	DL Libraries and APIs
	Experimental Environment

	Experimental Results
	RQ1: Branch Coverage Analysis
	RQ2: Ablation Study
	RQ3: Bug Detection Analysis

	Discussion and Threats to Validity
	Comparison with Greybox Fuzzing and Concolic Testing
	Input Validity
	Threats to Validity

	Related Work
	Deep Learning Library Fuzzing
	Concolic Testing

	Conclusion
	References

