
FuZZan: Efficient Sanitizer
Metadata Design for Fuzzing

Yuseok Jeon1, WookHyun Han2, Nathan Burow1, Mathias Payer1 3

1 2 3

Sanitizer: Debug Policy Violations

❖ Observe actual execution and flag incorrect behavior
➢ E.g., detect memory corruption or memory leak

❖ Many different sanitizers exist
➢ Address Sanitizer (ASan)
➢ Memory Sanitizer (MSan)
➢ Thread Sanitizer (TSan)
➢ Undefined Behavior Sanitizer (UBSan)

2

Address Sanitizer (ASan)
❖ Address Sanitizer is the most widely used sanitizer

➢ Focuses on memory safety violations
➢ Inserts redzone around objects
➢ Uses shadow memory to record whether each byte is accessible
➢ Detected over 10,000 memory safety violations

3

Process memory Shadow memory

RedZones

Access invalid
address “p” IsAccessible(p)

accessible

inaccessible

inaccessible

accessible
inaccessible

Bug

❖ Fuzzing is an automated software testing technique
❖ To detect triggered bugs, fuzzers leverage sanitizers
❖ Combining a fuzzer with a sanitizer is popular and effective

4

Fuzzer Random inputs

Feedback

Sanitizers

Bug

Fuzzing and Context

5

❖ Sanitizer is not optimized for fuzzing environment
➢ Highly repetitive and short execution

❖ Adapting ASan increases fuzzing performance overhead
➢ E.g., avg 3.4x (up to 6.59x)

Motivation

Fuzzer + ASan
Bug

(1) Memory management
➢ Accessing large virtual memory area incurs overhead

➢ Large memory area causes sparse Page Table Entries

(2) ASan initialization
(3) ASan logging

6

Sanitizers Have High Overhead

Page faults Memory management time

[*] Memory manage functions: (i) do_wp_page, (ii) sys_mmap, (iii) unmap_vmas, and (iv) free_pgtable

365% overhead 1160% overhead

7

FuZZan

❖ Introduce alternate light-weight metadata structures
➢ Avoid sparse Page Table Entries
➢ Minimize memory management overhead

❖ Runtime profiling to select optimal metadata structure

❖ Remove ASan logging overhead

❖ Remove ASan initialization overhead

FuZZan Design

8

Fuzzer Target

FuZZan sampling

ASan
shadow memory

FuZZan
RB-tree

FuZZan Min-
shadow memory

Fuzzing
module

Metadata
structure
selector

2

Calculate the
optimal metadata
structure

1 Measure target program behavior

Dynamic feedback

3

Switch

Switch to selected
optimal metadata
structure

Target

❖ Propose two different light-weight metadata structures

9

New Metadata Structures

Metadata
Structures

Memory
Management

 Cost

Metadata
Access Cost Target

Address Sanitizer High Low
O(1)

FuZZan
RB-tree Low High

O(log n)
Few metadata

access

Min-shadow Medium Low
O(1)

Frequent
metadata access

ASan Memory Mapping

10

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

20TB
(Shadow memory

+ Heap)

16TB
(Shadow memory)

11

Min-shadow Memory Mapping

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text

4GB

1.5GB
(Shadow memory

+ heap)

512MB
(Shadow memory)

20TB -> 1.5GB

Other Min-shadow Memory Modes

12

❖ Create additional min-shadow memory modes
➢ To accommodate large heap size
➢ 1GB, 4GB, 8GB, and 16GB

Bad
Shadow

Stack (1GB)
Heap (1GB)
BSS & Data
& text (2GB)

Shadow Memory
512MB

Shadow Memory
896MB

Shadow Memory
1.4G

Shadow Memory
2.4G

Bad
Shadow

Stack (1GB)

Heap (4GB)

BSS & Data
& text (2GB)

Bad
Shadow

Stack (1GB)

Heap (8GB)

BSS & Data
& text (2GB)

Bad
Shadow

Stack (1GB)

Heap (16GB)

BSS & Data
& text (2GB)

Dynamic Switching Mode
❖ Switch to selected metadata structure during fuzzing

(1) Avoid user’s manual extra effort to select optimal metadata structure
➢ No single metadata structure is optimal across all applications
➢ E.g., RB tree for allocating few objects

(2) Change metadata structure according to the target’s behavior
➢ Profile at runtime and switch to selected metadata structure
➢ E.g., find new path

(3) Increase heap size when target exceeds limitation

13

Sampling Mode

❖ Periodically measure the target program’s behavior
➢ Metadata access count (stack, heap, and global)
➢ Heap object allocation size

❖ Maintain ASan’s error detection capabilities

14

Initialization/Logging Overhead

❖ Use fork server to avoid unnecessary re-initialization
➢ E.g., poisoning of global variable
➢ Move ASan’s initialization point before fork server’s entry point

❖ Modify ASan to disable the logging functionality
➢ Complete logging can be recovered with full ASan

15

Detection Capability
❖ Juliet Test Suite

➢ NIST provides a test suite of all CWEs called Juliet
➢ Test using memory corruption CWEs
➢ Verified pass or fail all test cases as ASan

❖ Address Sanitizer provided unit test
➢ Verified pass all possible test cases

❖ Fuzzing test using Google Fuzzer Test Suite
➢ Fuzzing using 26 applications in test suite
➢ Verified same detection capability during fuzzing

16

CWE: Common Weakness Enumeration

Metadata Structure Performance

17

199%

43% 40% 38% 36%

18

19% 25%11%

43% 48%
48%

Performance Optimizations

FuZZan-Logging-Opt: optimization for logging overhead
FuZZan-Init-Opt: optimization for Initialization overhead
FuZZan-Min-1G-Opt: min-shadow memory (1G) mode with logging and initialization overhead

Compared to Asan

Compared to AsanCompared
to Asan

Dynamic Switching Performance

19
[*] The number on each bar indicates the total metadata switches

Performance Overhead Analysis

20

Page faultsMemory management time

62%
38%

16%

Fuzzer + ASan
Bug

Fuzzer + FuZZan

Bug Finding Speed Testing

21

61%

46%

43%

24%

43%

Real-world Fuzz Testing

22

13% improved

Unique discovered path

61% improved

Total execution number

* the (M) denotes 1,000,000 (one million)

Conclusion

23

❖ Combining a fuzzer with sanitizer hurts performance

❖ FuZZan massively reduces performance overhead
➢ Novel metadata structures to condense memory space
➢ Dynamic switching between metadata structures
➢ Removing unnecessary operations

❖ FuZZan improves fuzzing throughput over ASan
➢ Improves fuzzing throughput by 48% starting with provided seeds

■ 52% starting with empty seeds
➢ Discovers 13% more unique paths given the same 24 hours
➢ Provides flexibility to other sanitizers and AFL-based fuzzers

https://github.com/HexHive/FuZZan

