
ERASAN: Efficient Rust Address Sanitizer

Jiun Min∗
Department of Computer Science

UNIST

Dongyeon Yu∗
Department of Computer Science

UNIST

Seongyun Jeong
Department of Computer Science

UNIST

Dokyung Song
Department of Computer Science

Yonsei University

Yuseok Jeon†

Department of Computer Science
UNIST

Abstract—Rust is a rapidly growing system programming
language that ensures a speed comparable to traditional C/C++
system programming languages, along with the additional
benefit of guaranteed memory safety. However, Rust’s strict
security rules make implementing and executing some features
challenging. To address this, Rust has introduced unsafe Rust,
which is less constrained by these strict rules. Nevertheless,
these unsafe Rust, where strict Rust security rules are not fully
applied, can cause temporal and spatial memory bugs that
account for 22% of the Rust bugs reported between 2016 and
2023.

In this paper, we propose an efficient address sanitizer
design customized for Rust, called ERASAN, to detect memory
bugs in Rust programs more efficiently than prior work. Based
on our thorough analysis of safe and unsafe Rust programming
language standards as well as memory bugs found in real-world
Rust programs over the past years, we design and implement
ERASAN to only instrument memory accesses in both safe
and unsafe code areas where Rust cannot guarantee safety.
We evaluate ERASAN with several real-world applications.
ERASAN removes an average of 90.03% of ASan’s memory
access checks. Due to this, ERASAN significantly reduces ASan’s
performance overhead by an average of 239.05% without
harming its bug-finding ability.

1. Introduction

Traditional C/C++ system programming languages do not
guarantee memory safety, leading to memory bugs. However,
the newly emerging Rust programming language [9] guaran-
tees memory safety without sacrificing performance, and for
this reason, Rust is now widely used. For example, due to
Rust’s performance and security, major operating systems
such as Linux [19], Android [3, 8], and Windows [10] are
being partly implemented in Rust.

To guarantee memory safety, Rust employs strict safety
rules, including ownership [17], lifetime [14], and borrow-
ing [4]. However, these strict rules make it impossible

*. Equal Contribution
†. Corresponding author

to implement some features (e.g., double-linked lists) or
to ensure memory safety during certain operations (e.g.,
interacting with foreign languages). Therefore, an unsafe
Rust [26] is proposed to allow the implementation and
execution of these functions without restrictions imposed
by Rust’s security rules. However, some operations in these
unsafe Rust, which are not fully restricted by Rust security
policies, lead to various memory bugs. According to our
analysis, 22% of all 581 Rust bugs reported in the RustSec
Advisory Database [20] over the seven years (from 2016 to
2023) are buffer overflow, use-after-free, and double free.

To address these memory bugs in Rust, several ap-
proaches have been proposed, and these approaches can
generally be classified into static analysis-based [29, 31,
38, 43, 44], dynamic analysis-based [11, 49] bug detection
approaches, and isolation approaches [30, 40, 41, 55]. Isola-
tion techniques generally separate safe memory areas from
unsafe areas to deny illegal access (e.g., due to memory bugs)
to safe memory areas from unsafe areas. However, these
techniques cannot fundamentally eliminate memory bugs,
since these approaches cannot detect and remove memory
bugs. Static analysis-based approaches suffer from high false
positive issues (e.g., Rudra [29] shows a false positive up to
84%) mainly due to the over-approximated analysis of static
analysis (e.g., indirect call target analysis). Additionally,
existing static analysis tools have limited bug detection
coverage, as these tools cover only a specific portion of
memory bugs.

Unlike static analysis-based techniques, dynamic analysis-
based approaches (e.g., sanitizers [50]) have fewer false
positives and are the most widely used approaches for finding
memory bugs. These approaches are generally combined
with fuzzing approaches [46], which are actively being
researched and used to increase detection capability further.
The MIRI [11] interpreter for Rust’s mid-level intermediate
representation (MIR) is designed to detect memory bugs.
However, it has a significant high runtime overhead limitation,
as it interprets all code at execution time. Additionally, MIRI
cannot handle specific behaviors, such as releasing memory
from user-defined destructors.

Address Sanitizer (ASan) [49] is the most widely used

approach [50] and has detected a large number of bugs in
C/C++. For example, ASan has detected more than 10,000
memory bugs [34, 36] across various applications, including
over 3,000 memory bugs in Chrome [34] and more than
3,000 in Google’s server software [34], as well as in the
Linux kernel (over 1,000 memory bugs [35, 37]), through a
customized Kernel Address Sanitizer (KASan) [37]. ASan
can also be applied to Rust, as Rust internally uses LLVM as
its backend optimizing compiler. Therefore, ASan is widely
used to detect memory bugs in Rust due to its strengths (e.g.,
low false positive and broad detection coverage) and the Rust
compiler’s support [12, 18] for ASan, making it easy to apply
without manual efforts. However, ASan inherently checks all
memory accesses, leading to around two times [34] runtime
overhead. Although several existing works [53, 56, 57] have
been proposed to reduce this high runtime check overhead
in ASan, they can still not eliminate unnecessary checks for
memory accesses whose safety is guaranteed by Rust’s strict
memory safety rules.

We present ERASAN, an efficient address sanitizer
customized for the Rust environment, enhancing efficiency
by removing unnecessary checks in regions where memory
safety is guaranteed per the strict rules of Rust without
trading bug detection precision for performance. To achieve
this, we first conducted a wide-ranging and in-depth analysis
for various standards [4, 5, 14, 17, 20, 26], and all 581
bugs reported in the RustSec advisory database [20] over
seven years from 2016 to 2023. Through this analysis, we
draw memory bug patterns in Rust. We also find that most
unsafe areas are still protected by the robust security policies
of Rust, which guarantee memory safety. Consequently, we
identified that memory bugs occur only in areas related to
raw pointers (including even safe Rust). Raw pointers are
the only type of pointers not checked by the Rust compiler
(rustc). More specifically, this raw pointer can point to
invalid memory, free’d memory, or even NULL, since Rust
safety checks (e.g., ownership, borrow checks, or bounds
check both at compile time and runtime) do not apply to
raw pointers. As a result, raw pointers and their related code
area (including Rust safe) can break Rust safety barriers and
lead to memory bugs.

To detect the potential memory bugs in these areas,
ERASAN identifies raw pointer-related areas, including safe
Rust, to thoroughly check memory accesses in these identified
areas. In addition, ERASAN further eliminates memory
access checks in identified areas if these accesses have
already been verified by Rust’s runtime checks for spatial
memory bugs and are safe from temporal memory bugs.

To do this, ERASAN performs the following three steps:
(1) identifying raw pointers, (2) extracting unsafe memory
accesses, and (3) conducting selective check instrumentation.
Initially, ERASAN identifies instructions that directly handle
raw pointers (e.g., dereferencing raw pointers or assigning
an address to a raw pointer). Unfortunately, at the LLVM-
IR code, the type information of raw pointers is no longer
available (i.e., difficult to distinguish from other instructions
such as Rust’s safe references), so raw pointer identification
is performed at the MIR code for precise analysis. Dur-

ing the MIR analysis phase, ERASAN inserts additional
annotation into every instruction that directly handles raw
pointers to accurately identify raw pointers in the subsequent
analysis phase (e.g., LLVM IR pass). This allows for a
more precise analysis in the following analysis stages. In
the next step, ERASAN conducts points-to analysis (to
identify possible targets each raw pointer can point to) and
value-flow analysis to extract all memory accesses (e.g.,
references) that are in alias relation with the extracted raw
pointer set. These identified raw pointers and references
in alias relation, potentially related to memory bugs (e.g.,
accessing a freed object that is freed by a raw pointer), are
candidates for the sanitizer check instrumentation to detect
memory bugs. However, for memory accesses excluding raw
pointer memory accesses, Rust conducts spatial memory bug
checks. Therefore, inserting additional check instrumentation
is unnecessary if an identified memory access is not via a
raw pointer and is unrelated to temporal memory safety bugs.
For this, ERASAN identifies the free (e.g., drop and return)
locations of all objects and then finds all memory access
instructions (i.e., ERASAN’s target memory access set) that
come after the freeing code, which are potentially related to
temporal memory safety bugs. Lastly, ERASAN selectively
applies ASan’s memory access check instrumentation to the
identified memory access set.

Our evaluation shows that ERASAN significantly reduces
ASan’s performance overhead without any reduction in its
bug-finding capability. More specifically, by removing an
average of 90.03% of existing ASan checks, ERASAN
can reduce ASan’s performance overhead by an average
of 239.05%. Additionally, ERASAN shows the same bug
detection capability as ASan, successfully detecting the same
set of reported Rust memory bugs.

This paper makes the following contributions:
• Conducting a broad and in-depth analysis of memory bugs

found in the real-world programs, which allows us to
taxonomize patterns of memory bugs in Rust programs.
Our key finding is that only areas related to raw pointers,
not all unsafe areas, are prone to have memory bugs.

• Designing and implementing ERASAN, which only in-
struments memory accesses in both safe and unsafe code
regions affected by raw pointers not fully covered by Rust
security checks.

• Evaluating ERASAN on various real-world Rust appli-
cations and showing that ERASAN significantly reduces
ASan’s performance overhead by 239.05% through the
elimination of approximately 90.03% of existing ASan
checks.

2. Background and Motivation

2.1. Security Rule of Rust

Rust is designed to guarantee memory safety by lever-
aging the following four main policies: ownership [17],
borrowing [4], lifetime inference [14], and runtime bounds
checking [5]. According to the ownership rule, each value

2

TABLE 1: Applicability of Rust memory bug related memory safety
policies (R1:Ownership, R2:Borrow Check, R3:Lifetime Inference,
R4: Bound Check in static-time, R5: Bound Check in run-time) to
each capability.

Capabilities Compile Time Run time
R1 R2 R3 R4 R5

Dereferencing a Raw Pointer é é é é é
Calling an Unsafe Function/Method Ë Ë Ë Ë Ë

Implementing an Unsafe Trait Ë Ë Ë Ë Ë
Other Operations Ë Ë Ë Ë Ë

must be owned by one entity during execution. The borrowing
rule safely allows temporarily transferring the ownership of
a value to an entity.

Additionally, these proactive policies in Rust help to
prevent data races by ensuring that references cannot be used
simultaneously as mutable (only one reference can exist).
Lifetime inference ensures that references do not outlive the
data they point to. For example, in the case of local variables
stored in the stack, each local variable has a lifetime that
defines its valid scope. When a function returns or a block
ends (i.e., lifetime expires), these variables are removed from
the stack, and their destructors [25] are called for cleanup.
Additionally, in the case of dynamic allocations stored in a
heap, this memory location is managed by ownership and
lifetime inference. When the owner’s lifetime ends (i.e., the
owner goes out of scope), the data is automatically cleaned
up by the Drop trait to prevent memory leaks or dangling
pointers.

Due to these policies, a Rust program is guaranteed to
have no temporal safety violations such as use-after-free,
double-free, and data race bugs. Rust also provides compile
and runtime checks for out-of-bounds access through bounds
checking. More specifically, if the length of the memory
allocation is determined at compile time, such as stack
allocations, rustc checks whether the memory accesses
a region within the valid memory range. Also, if the length
is determined at runtime, such as heap allocations whose
size cannot be statically determined, these memory accesses
(e.g., indexing of a vector) are checked by the Rust runtime’s
bounds checking [5].

However, these strong Rust policies do not apply to all
areas of Rust. In these areas where the policies are not fully
applied, various memory bugs can occur. Therefore, it is
important to identify these areas precisely and insert memory
bug checks.

2.2. Address Sanitizer

Address Sanitizer (ASan) [49] is the most popular and widely
used sanitizer. ASan detects memory bugs by maintaining
the accessibility information of each byte in shadow memory.
More specifically, in applications where ASan is applied,
objects are marked as accessible in the shadow memory.
They are surrounded by inaccessible red zones, which are
marked as inaccessible in the shadow memory. Additionally,
when an object is freed, the corresponding area in the

1 fn main(){

2 /* Allocate the value */

3 let v1 = 23;

4

5 /* Safe Reference */

6 let s1 = &v1;

7

8 /* Access Safe Reference */

9 println!("{}", s1);

10

11 /* Raw Pointer */

12 let u1 = &v1 as *const i32;

13

14 /* Access Raw Pointer */

15 unsafe {println!("{}", *u1);}

16 }

17 define internal void @main() {

18 bb5:

19 ; Memory Access : s1

20 %2 = load i32, i32* %s1

21 ; ASan Instrumentation

22 call void @asan_load64(i32 %r)

23 br label %bb6

24 bb9:

25 ; Memory Access : *u1

26 %3 = load i32*, i32** %u1

27 ; ASan Instrumentation

28 call void @asan_load32(i32 %r)

29 br label %bb6

30 ...

31 }

Figure 1: An example of ASan’s memory check instrumentation
in Rust program.

shadow memory is marked as freed (internally using ASan’s
quarantine queue [1]). In the case of out-of-bounds memory
bugs, ASan can detect when memory access goes to the red
zone surrounding valid objects. Other memory bugs, like
use-after-free or double-free bugs, can be detected when the
application accesses memory marked as freed in the shadow
memory.

Since the Rust compiler supports several sanitizers, in-
cluding ASan (via -Zsanitizer=address flag) [18], applying
ASan to Rust applications is easy and does not require any ad-
ditional manual effort. However, after applying ASan to Rust,
there is a considerable overhead problem (more than two
times) caused by ASan. The majority of this high overhead
comes from ASan’s memory access checks, which generally
contribute to 86% of ASan’s overhead [57]. However, many
of these memory access checks are superfluous, as many of
these memory accesses are checked by Rust per its security
policy. For example, in Figure 1, ASan inserts memory
access safety check codes on Line 9, where Rust guarantees
memory safety through its ownership and boundary policies
(i.e., ASan instrument to LLVM-IR instruction on Line 22).
Consequently, these unnecessary checks can significantly
degrade the performance of Rust programs. Although several
existing approaches [52, 53, 56, 57] have been proposed
to identify ASan’s unnecessary checks, these approaches
do not consider the safety of memory accesses guaranteed
by Rust. Therefore, some memory access checks identified
as needed checks (but Rust’s strong security policies can
confirm memory safety) might be unnecessary. To address
this issue more precisely, it is necessary to identify areas
where Rust cannot ensure memory safety and correctly insert
ASan’s memory access checks in these areas.

3. Real-World Rust Memory Bugs Analysis

In this section, we introduce (§3.1) how Rust’s security
policies are applied within the Rust unsafe and explain its
implication on potential memory bugs in Rust programs.
Furthermore, through large-scale analysis of real-world Rust
memory bugs, we explain (§3.2) how improper uses of Rust’s
unsafe areas could lead to memory bugs.

3

TABLE 2: Analysis of all 131 memory bugs in RustSec from 2016
to 2023

Memory Bug Type Detected by Rust TotalYes No

Buffer-Overflow (BOF) 12 49 61
Use-After-Free (UAF) 0 44 44
Double-Free (DF) 0 26 26

Total 12 119 131

3.1. Memory Safety Implications of Unsafe Rust

Rust security policies are often too restrictive when imple-
menting low-level abstractions or interacting with programs
written in foreign programming languages. These restrictions
can be selectively bypassed by using the unsafe keyword [26].
In Rust, the unsafe keyword signals a transition to an unsafe
domain, allowing certain unsafe operations that bypass Rust’s
safety policies. Within these unsafe domains, developers
obtain the following five specific capabilities [26]:

(i) Dereferencing a raw pointer
(ii) Calling an unsafe function/method

(iii) Implementing an unsafe trait
(iv) Accessing fields of unions
(v) Accessing/modifying a mutable static variable

However, these operations, allowed in the unsafe domain,
do not directly lead to memory bugs. We find that the
first capability, (i) dereferencing a raw pointer, is the only
capability that, when misused, can directly cause memory
bugs. These raw pointers are not guaranteed to point to
in-bounds, valid memory, nor be non-NULL by Rust. Also,
there is no restriction to using raw pointers to create multiple
immutable and mutable references, which are the well-known
root causes of temporal memory bugs.

The following two capabilities (i.e., (ii) and (iii)) pertain
to denoting the safety of a function, method, or trait. Calling
unsafe functions or methods can lead to memory bugs, but
the root cause is the improper use of raw pointers (the first
capability mentioned before) within the called functions or
methods. A trait is marked unsafe when Rust is unable to
guarantee that certain invariants hold. Violations of these
invariants, however, generally result in logical errors rather
than memory bugs. Memory safety invariants could possibly
be compromised by using unsafe traits as well. Still, the root
causes of these memory bugs are also the misuse of raw
pointers within one of its methods. The last two capabilities
(i.e., (iv) and (v)) do not directly cause memory bugs either;
the former can directly cause type confusion only, and the
latter causes data races, which lead to misinterpretation of
union and global variables, respectively. Accessing union
fields and static (i.e., global) variables are still within the
bounds (therefore, no spatial memory bugs) of the underlying
objects, and while these objects are valid (no temporal
memory bugs).

We analyze the types of safety policies of Rust that
are removed when using each capability and summarize

1 /* RUSTSEC-2020-0097: UAF due to a raw pointer without unsafe

block */↪→

2 #![forbid(unsafe_code)]

3

4 use xcb::base::Error;

5

6 fn main() {

7 let mut v1: Vec<i8> = vec![1, 2, 3, 0];

8 let _ = Error {

9 ptr: v1.as_mut_ptr(); // a raw pointer

10 };

11

12 // use-after-free in v1

13 v1[0] = 123;

14 }

Figure 2: An example of UAF (RUSTSEC-2020-0097) in Rust
xcb crate

the result in Table 1. This analysis clearly shows that the
capability of raw pointer dereferencing is the only operation
that can directly cause memory safety violations. Therefore,
despite the unsafe label in the function or method, a large
portion of these functions and methods are protected by the
Rust safety policies, as shown in Table 1.

Furthermore, to detect all possible memory bugs in Rust,
an unsafe Rust-based analysis is not enough, and an analysis
based on raw pointers is needed. For example, in the real-
world memory bug (RUSTSEC-2020-0097) [33] found in
the xcb crate, as shown in Figure 2, an UAF bug can occur
without using unsafe Rust with ![forbid(unsafe_code)]
(line 2). More specifically, this bug occurs when the v1 vector
in the Error structure is deallocated due to the lifetime rule,
and then an attempt to access (line 13) deallocated v1 vector
from a safe Rust. As demonstrated in the above example,
without the use of unsafe areas, memory bugs can arise in
Rust through raw pointers that are initialized in safe Rust.
Therefore, to more accurately identify memory bugs in Rust,
it is necessary to check all code related to raw pointers. In
the following section (§3.2), based on the analysis of all
Rust bugs listed in the RustSec Advisory Database [20], we
will explain in detail how these raw pointers can lead to
various memory bugs.

3.2. Real-World Rust Memory Bug Patterns

To check the correctness of our research direction (i.e., raw
pointer-based analysis), we analyze all 581 Rust bug reports
in the RustSec Advisory Database [20] over seven years
(from 2016 to 2023-12). RustSec Advisory-DB contains all
Rust-related vulnerabilities and is a superset of Rust program
CVEs. Among them, as shown in Table 2, we identify 131
(around 22%, 131 out of 581) memory bugs (i.e., BOF, UAF,
and DF bugs) that ASan can detect. The remaining types of
bugs are mainly related to maintenance, crypto-failed, logic,
and concurrency bugs. Among 131 temporal and spatial
memory bugs, we find that only 9% (12 out of 131) can be
detected (all these bugs cause the program panic) by Rust’s

4

Point Raw Pointer
to NULL

Point Raw Pointer
to OOB

Create
Raw Pointer

Derefereneing
pointer to NULL

Free to
Dangling

Dereference
Dangling

NULL Pointer
Dereferene

Buffer Overflow Use After Free Double Free

D1 D2Domain of assigning invalid values to raw pointer Domain of using invalid raw pointer

Dereferencing
pointer to OOB

Domain of occurring memory bugsD3

Dangling
Raw Pointer

Reference
Freed memory

Freed by
AutoDrop

Freed by
 Drop Function

Figure 3: Rust memory bug patterns. Domain means the behaviors
related to each domain description at the bottom of the figure.

security policies. In most cases of spatial memory bugs (49
out of 61), Rust does not perform any checks on memory
access through raw pointers, while other memory accesses
through other pointer types (e.g., reference) are checked at
compile time or runtime. All bugs not detected by Rust are
related to incorrect memory access through these raw pointers.
In the case of temporal memory bugs, if some objects are
forcibly freed (i.e., break Rust’s lifetime rules) through
deallocation functions, Rust is unable to prevent (cannot
detect these temporal memory bugs) accessing these freed
objects through various types of pointers (e.g., references
or raw pointers) in both Unsafe and Safe Rust. Therefore,
to accurately detect temporal memory bugs, it is necessary
to check raw pointers and all other pointers that have an
aliasing relationship with raw pointers. This is because other
aliased pointers can access objects freed by a raw pointer.
Detailed examples and explanations are provided in the Use
After Free part (in this subsection).

Based on our analysis of these real-world memory bugs,
we summarize Rust memory bug patterns and illustrate these
patterns. As shown in Figure 3, all memory bugs begin with
the creation of a raw pointer. Following this, an invalid value
(e.g., NULL value) is assigned to the raw pointer, and if this
value is used inappropriately (e.g., dereferencing raw pointer
memory), it occurs memory bugs. Detailed explanations for
each memory bug type are as follows.
Buffer Overflow. A Buffer Overflow (BOF) bug occurs
when a pointer dereferences out-of-bound of an allocated
object. rustc prevents out-of-bound access by statically
and dynamically checking memory access. However, as
mentioned in §3.1, Rust does not perform any static or
dynamic bound checks for the raw pointer’s memory access.
This means that the raw pointer can access the allocated
memory object without any restrictions. Specifically, BOF

1 // RUSTSEC-2019-0016: UAF due to a lifetime error

2

3 fn gen_Vec(tmp_str: String) -> Vec<u8> {

4 let mut s = tmp_str;

5 let ptr = s.as_mut_ptr(); // a raw pointer

6 unsafe {

7 let vec = Vec::from_raw_parts(ptr, s.len(), s.len());

8 // Patched: mem::forget() increase lifetime

9 // mem::forget(s);

10 return vec;

11 }

12 }

13

14 fn main() {

15 let mesg = String::from("Hello");

16 let mut x = gen_Vec(mesg);

17 x[0] = '1' as u8; // use-after-free

18 }

Figure 4: An Example of UAF (RUSTSEC-2019-0016) in Rust
Isahc crate

bugs in Rust occur through the following three steps: (1)
creating a raw pointer, (2) assigning an invalid address
(pointing out-of-bound object) to the raw pointer, and (3)
dereferencing the raw pointer pointing to out-of-bound.
Therefore, to address these BOF bugs that are not covered
by Rust, we need to check all raw pointer dereferencing,
except any safe reference or smart pointer (safe references or
smart pointers have metadata about their designated object
and are subject to rigorous bound checks based on length
and capacity).
NULL Pointer Dereference. A NULL Pointer Dereference
(NPD) bug occurs when an application accesses memory
through a pointer that points to a NULL. In Rust, only a raw
pointer can have this NULL value through specific APIs (e.g.,
ptr::null() or ptr::null_unchecked()), while other
safe references are not allowed [16] to have a NULL value.
Therefore, the NPD bug can only occur by dereferencing a
raw pointer that points to a NULL value. This NPD bug in Rust
occurs through the following three steps: (1) creating a raw
pointer, (2) assigning a NULL value to the raw pointer, and
(3) dereferencing the raw pointer pointing to NULL. To detect
NPD, we only need to check all dereferencing raw pointers
that could cause NPD, as other pointers or references are
not allowed to point to NULL by the Rust safety rule.
Use After Free. Use-After-Free (UAF) can occur when
an object is deallocated either through automatic memory
deallocation via Rust lifetime rule or manually calling
drop function (e.g., dealloc or libc::free()), leading raw
pointers, safe pointers (like references), or smart pointers
to become dangling pointers. Dereferencing these dangling
pointers can trigger UAF bugs. More specifically, Rust cannot
guarantee that raw pointers always point to valid memory
areas, allowing them to unrestrictedly point to objects already
pointed by other pointers like references (i.e., breaking Rust’s
ownership rule). If this object is later deallocated through
lifetime and automatic drop, the raw pointer becomes a

5

Drop

Heap

✓

✓

✓ ✓

Identifying�Memory�
Allocation�Sites

2
Identifying�and�

Annotating�Raw�Pointers�

BB{
Statement�1�✓
Statement�2�✓
...�✓
Statement�N�✓
Terminator�✓
}�

BB{
%�v�=�alloca i32,�…
%�ptr =�alloca *i32 !rawptr
…
store�*i32�%ptr !rawptr
call�void�func …
}

4.1�Raw�Pointer�Annotation

ERASan
Check

Program

Identifying�Heap�
Allocation�Sites

3

Checking�Memory�
Access�Sites�After�Drop

1 Selective�Memory�
Access�Instrumentation

6

Checking�Memory�
Access�Sites�After�Scope

4

5

Stack

✓

Stack�Return

✓✓

HeapStack

X

rawptr

Drop

rawptr

rawptr

✓ERASan
Check

alias

R
Z

R
Z

…

✓ERASan
Check

4.2 Unsafe�Memory�Access�Identification
4.3�Selective�Asan�Check�

Instrumentation

Figure 5: Overview of ERASAN. The small black boxes indicate the memory accesses and the small red boxes present the memory
accesses by the raw pointer. The small boxes filled with red represent the memory accesses checked by ERASAN. The arrows indicate the
direction of static analysis.

dangling state. Dereferencing this dangling pointer can lead to
UAF bugs. Additionally, objects can be forcibly deallocated
by the drop function (with raw pointer), and accessing these
deallocated memories through references or smart pointers
(now dangling pointers) in safe and unsafe areas can also
cause UAF bugs.

For example, Figure 4 shows an example of a real-
world UAF bug [32] caused by raw pointers. The gen_Vec
function creates a stack object (named s) that includes a
pointer to a String type heap object (line 4) and generates
a raw pointer pointing to it (line 5). Subsequently, the
Vec::from_raw_parts function is used to create a new vector
(line 7). Internally, the address of String s saved in the raw
pointer (ptr) is assigned to the pointer within the newly
allocated vector (vec). Now, the pointer inside the vec vector
can also point to s. When the gen_Vec function returns
the vector vec, the String type object s is automatically
deallocated according to Rust’s lifetime rule. Following this,
the returned vector vec is assigned to x in the main function.
Then, memory access through x (line 17) within the safe Rust
occurs UAF memory bugs. In principle, it should be protected
by the Rust compiler. However, the use of raw pointers
bypasses Rust’s security checks, leading to a situation where
access deallocated memory through x, which is perceived as
safe and consequently leads to UAF.

As shown in Figure 3, triggering UAF in Rust requires
the following three steps: (1) creating a raw pointer, (2) deal-
locating memory by automatic drop or calling drop function,
and (3) dereferencing these dangling pointers or references.
Note that while UAF can occur through incorrectly using
raw pointers, dangling pointer deference (i.e., ASan’s UAF
checkpoint) can happen in various places (e.g., reference in
safe Rust) during dangling pointer dereferencing. Therefore,
it is important to check all locations where dangling pointers
can be dereferenced.
Double Free. The overall procedure for the Double Free
(DF) bug in Rust is quite similar to that of UAF. The
main difference is attempting to deallocate it again after
the target object is deallocated through a raw pointer or
other pointers (e.g., reference). These DF bugs can occur
through an additional free by manually calling the drop

function or automatic drops when a reference pointing to the
memory, freed by a raw pointer, reaches the end of its lifetime.
Consequently, triggering DF bugs in Rust requires three
steps: (1) creating a raw pointer, (2) deallocating memory
by automatic drop or by calling the drop function, and (3)
deallocating again freed memory by automatic drop or calling
drop function.

4. ERASAN Design

ERASAN performs selective instrumentation to memory ac-
cesses in both safe and unsafe code areas, where Rust cannot
guarantee safety, to significantly reduce the runtime overhead
of ASan. The primary challenge is to identify as many safe
memory access sites as possible to maximize performance
gain during memory access validation check at runtime, while
fully preserving ASan’s memory bug detection capabilities.
Figure 5 illustrates the overall architecture of ERASAN.
ERASAN has the following three main components:

(i) Raw Pointer Annotation (§4.1): ERASAN performs
type-matching analysis to identify every raw pointer
at the MIR level and annotates the LLVM IR instruc-
tions. Since the raw pointer is a unique attribute that
exists only up to the MIR level, ERASAN passes this
information for later static analysis.

(ii) Unsafe Memory Access Identification (§4.2): ERASAN
performs static analysis to identify potentially unsafe
memory accesses. This is the core part of ERASAN,
which identifies all potentially unsafe memory access
sites according to our bug patterns (§3.2).

(iii) Selective ASan Check Instrumentation (§4.3): ERASAN
only instruments memory access check instructions at
potentially unsafe memory access sites identified in the
previous identification phase.

4.1. Raw Pointer Annotation

ERASAN annotates all LLVM IR instructions corresponding
to raw pointers. For this, since this information is only
available at Rust’s IR levels, such as HIR [13] and MIR [15]
(not at the LLVM IR level), ERASAN transfers the raw

6

pointer information through annotations to the LLVM IR,
which is translated from MIR.

To annotate raw pointers, ERASAN performs a type-
matching analysis during the translation phase from MIR to
LLVM IR. More specifically, the MIR represents a control-
flow graph composed of basic blocks, each containing a
series of statements ending with a terminator. To handle
all these MIR instructions and find raw pointer instruction,
ERASAN checks for raw pointer types within all statements
and terminators of MIR. Since we need to annotate all
codes related to raw pointers (e.g., dereferencing raw pointer,
passing the raw pointer the arguments, or return values
of function callee), ERASAN parses each statement and
terminators of MIR to find raw pointer type information
existing at a more granular level (e.g., place and rvalue). The
newly generated LLVM IR code, annotated with raw pointer
information, is utilized in the next points-to and value-flow
analyses stage.

4.2. Unsafe Memory Access Sites Identification

ERASAN proposes two static analysis algorithms that can
identify always-safe memory allocation sites and potentially
unsafe memory access sites in the LLVM-IR. These algo-
rithms performs as follows:

• Compute Raw Pointer Points-to Set. As mentioned in
section §3.2, raw pointer can lead to memory bugs not only
through direct dereferencing but also through all pointers
that alias with them. To accurately identify all pointers
in an alias relationship with raw pointers, ERASAN
first needs to determine all object locations that these
raw pointers can access. This initial step is crucial for
the subsequent extraction of aliased pointers. For this
purpose, ERASAN utilizes conservative points-to analysis
to compute the may-points-to set for each raw pointer
identified in the raw pointer annotation phase (§4.1).

• Differentiate Allocation Sites. ERASAN categorizes object
allocation sites into stack and heap types. This differen-
tiation is essential because the mechanisms of potential
memory bugs in Rust vary depending on whether they
occur from stack or heap object. To accurately differentiate
between these memory allocation sites, ERASAN performs
identifies object types at allocation sites (§4.2.1).

• Identify Unsafe Memory Access Sites. ERASAN extracts
vulnerable memory access sites associated with pointers
(alias pointers with raw pointers) computed by points-
to analysis. ERASAN employs optimization techniques
to selectively track only memory access sites that are
actually vulnerable to memory bugs. This approach will
be discussed in detail in section (§4.2.2).

4.2.1. Identify Object Type at Allocation Site. ERASAN
conducts analysis (Algorithm 1 in §A) to determine the types
of objects (i.e., stack, heap, or global) allocated at memory
allocation sites accessible by raw pointers. This analysis
mainly consists of two parts: (1) identifying all accessible

✓

✓

✓

Fu
nc

tio
n

Re
tu

rn

Stack

Stack

Raw
Pointer

A
ut

om
at

ic
D

ro
p

Tracking Memory Access Sites After Drop

Heap

Heap

Tracking Memory Access Sites After Scope

✓
✓

Heap Object

Stack Object

✓ ERASan Check

Identifying Heap Allocation Sites

Points-to set

✓

Figure 6: Identifying Heap Allocation Sites and Alias Pointer
Dereference Sites

memory allocation sites and (2) identifying heap allocation
sites.
Identifying Memory Allocation Sites. ERASAN utilizes
Andersen points-to analysis [27], available in SVF [51],
in a context- and flow-insensitive mode to identify all the
memory allocation sites that can be pointed to by raw pointers.
Then, starting from each raw pointer, ERASAN iteratively
traverses the statements backward, using the Sparse Value
Flow Graph (SVFG) up to these memory allocation sites. In
the SVFG, each node represents a pointer, and each edge
represents the instructions’ operations performed on these
pointers. ERASAN is able to identify memory allocation
sites during traversal if it encounters an Addr SVFG node
that can represent these sites (e.g., alloca instruction).
Identifying Heap Allocation Sites. The key challenge is
accurately classifying memory allocation sites as either stack
or heap. Rearding heap variables, Rust uses wrapper functions
such as exchange_malloc() for memory allocation [45],
rather than directly invoking the malloc function. However,
a significant challenge arises as substantial stack allocation
sites (i.e., alloca instructions) are also linked to these heap
wrapper functions. This makes it difficult to distinguish
between stack and heap allocation sites accurately [30].

ERASAN distinguishes heap allocation sites based on
Rust’s drop traits. Unlike C/C++, which can allocate or
free heap memory directly, Rust manages heap memory
automatically to prevent memory bugs [28, 31, 45, 55].
Particularly, Rust’s heap management scheme automatically
deallocates heap objects when they go out of scope, effec-
tively preventing the creation of dangling pointers, which are
a common cause of UAF bugs. This management approach
indicates that for all heap objects in Rust, automatic drop
functions (i.e., drop_in_place, box_free) are integrated
during the compilation process. Therefore, if a pointer flows
into a drop function, it should be considered as associated
with a heap allocation site. This approach can be more
precise compared to analyzing Rust’s heap wrapper functions
(i.e., exchange_malloc()), as a large number of pointers,
many of which are not related to heap allocation sites, flow
into these wrappers and can obscure their association with

7

heap allocation. However, as drop functions are explicitly
associated with heap allocation pointers, focusing on these
functions simplifies the static analysis process and enhances
accuracy by reducing complexity.

Based on this Rust’s heap management scheme,
ERASAN performs a top-down traversal of the SVFG, as
shown in Figure 6, to identify heap allocation sites. ERASAN
starts with the allocation sites identified from the points-to
analysis, tracing the flow of pointers within the SVFG. It
then examines if this pointer flows into Rust’s drop functions.
If a pointer is found to lead into a drop function, it is
identified as a heap allocation site. Note that any allocation
site not identified as heap is automatically classified as stack
allocation site. For global, related UAF cannot occur, and
all spatial memory safety bugs occur through raw pointers.
ERASAN ensures that all memory accesses via raw pointers
are checked, allowing for the detection of memory bugs
related to all global objects, so global objects (and its
allocation sites) are not considered separately.

4.2.2. Identify Unsafe Memory Access Sites. ERASAN
performs using the memory allocation sites information
computed in the previous step (Algorithm 1 in §A), focusing
on tracking related memory access sites. Here, alias pointers
refer to the pointers that have an aliasing relationship with
any raw pointers. The analysis is done in two steps, as
depicted in Figure 6.
Checking Memory Access Sites After Drop. As explained
earlier in §3.2, Rust’s safe memory accesses can cause UAF
and DF if they alias with raw pointers. So, all alias pointers
of raw pointers should be considered potentially unsafe. But
from our Rust memory bug patterns, alias-pointers (safe
references) of raw pointers are vulnerable only when they
are used after drop functions. It means that alias-pointers’
memory access before the drop function will be protected
by Rust’s safety rules. More precisely, temporal memory
bugs do not occur, and spatial memory bugs are checked by
Rust, except for memory access through a raw pointer. So,
ERASAN only tracks alias-pointers after drop operations
when it comes to heap objects.

To this end, ERASAN performs value-flow analysis start-
ing from the heap memory allocation sites identified during
the previous analysis (§4.2.1). This involves continuously
searching the SVFG in a forward direction to find the heap’s
drop function. When a drop function is found, it searches for
memory access operations (e.g., load and store) following
the drop function and marks the corresponding instructions
as heap alias pointer accesses. By doing so, ERASAN
can reduce unnecessary overheads caused by checking safe
memory accesses using alias pointers.
Checking Memory Access Sites After Scope. Similar to
the case of heap, only a few alias pointers point to stack
objects should be considered as potentially unsafe memory
access sites. If out-of-scope access to the stack is performed
in the safe Rust, memory bugs can be prevented through
Rust’s lifetime inference rules. However, if a raw pointer
points to the stack memory area, the stack object is no longer

ERASAN�Check

ERASAN
Memory
Layout

Alias
Pointer

Raw�
Pointer

Stack

0
0

1
1

0
0

1
1

Heap

Safe�
Reference✓

Redzone

Shdoaw Memory�(Valid)

Shdoaw Memory�(Invalid)

✓ ✓ ✓ ✓

Figure 7: The memory layout of ERASAN with redzone and
shadow memory

subject to Rust’s lifetime inference rules, and subsequent
memory accesses in the safe Rust through an alias pointer
can potentially lead to memory bugs.

Based on this observation, ERASAN performs stack after
scope access analysis to track all alias pointer dereferences
after stack objects are cleaned up. It conducts value flow
analysis in the same manner as heap after drop access
(§4.2.2). However, unlike the heap, the stack in Rust does not
incorporate an automatic drop function; instead, stack objects
are cleaned up at the end of the function’s scope. Reflecting
on this, ERASAN assesses whether a stack object has been
cleaned up by examining the lifetime of the function that
contains the stack object.

4.3. Selective ASan Check Instrumentation

To check validity of memory access, ERASAN utilizes
ASan’s compile-time instrumentation and its runtime verifi-
cation logic. Based on the set of potentially unsafe memory
accesses identified through our MIR-level and LLVM-IR-
level analysis (§4.1 and §4.2), ERASAN selectively inserts
ASan’s instrumentation. To enhance efficiency through se-
lective instrumentation while perserving bug detection capa-
bilities, ERASAN only removes instrumentation from safe
memory access sites while keeping all the instrumentation
that maintains ASan’s full metadata in shadow memory.
Figure 7 shows the memory layout of ERASAN with redzone
and shadow memory. ERASAN places a redzone before and
after all objects regardless of whether they are on the heap
or stack, maintaining full metadata in shadow memory. On
the other hand, ERASAN selectively instruments memory
accesses, depending on unsafe memory access identification.
For safe dereferences, ERASAN removes the sanitizer checks
for higher performance.

We note that ASan’s custom heap allocator, which inserts
redzones between the allocated objects and initializes shadow
memory for them, generates an overhead of 9.6%, according
to a prior study [57]. To accomplish our goal of balancing
detection performance and accuracy, ERASAN follows the
same allocation scheme as ASan, aiming to preserve full
detection capabilities of memory bugs (e.g., particularly from
dereferencing random-value raw pointers). We take this minor
overhead caused by metadata management in exchange for
a broader vulnerability detection scope.

8

5. Implementation

In this section, we describe the main implementation details
of three parts: modification of rustc to perform metadata
annotation (§5.1), SVF [51] implementation of our static
analysis (§5.2), and ERASAN’s LLVM Pass (§5.3).

5.1. Annotating Raw Pointers

ERASAN automatically annotates all the created raw pointers
with our own raw pointer metadata (i.e., !rawptr) using
our type matching analysis for all the statements and ter-
minators during code generation phase [6]. ERASAN not
only checks raw pointer type matching but also checks
raw pointer operations such as dereferencing or used as
function arguments and return values. We implement the
automatic identification of raw pointers by modifying the
source codes of codegen-ssa and codegen-llvm within
rustc-1.64-nightly. We automatically find all LLVM IR
instructions related to raw pointers with our raw pointer
metadata, with no additional manual effort.
Annotating Raw Pointers in Statements. The statement
(i.e., StatementKind [22]) includes assign or deinit and
consists of two components: place which indicates memory
location, and rvalue which represents value production. The
type information of RawPtr indicating raw pointer can be
verified through the variable to indicate the type (e.g., ty) in
both place and rvalue. In order to annotate all instructions
related to raw pointer operations, we implement the analysis
in code to transfer statements to LLVM IR instruction (i.e.,
codegen-statement), covering granular level information
such as projectElem of Deref type to indicate dereferencing.
Annotating Raw Pointers in Terminators. A terminator is
a statement with potentially multiple successors and is always
at the end of a block in MIR. It is a Terminatorkind [23]
that includes Call, Assert, and other various subtypes. It
means that several structures such as Call (function calls
like as_mut_ptr()) and Assert and each type has various
sub-components containing place or rvalue. We implement
our type analysis in rustc to transfer the terminator to in-
struction (i.e., codegen-terminator). To analyze terminators,
ERASAN checks the type of all terminators and checks the
subcomponents for the existence of the RawPtr type (e.g.,
call evaluated for dest, which is a function return value,
and args, which is a function argument value). From type
matching analysis for every terminator, ERASAN extracts the
terminator containing information about RawPtr and injects
metadata into the LLVM IR instructions generated from that
terminator.

5.2. Identifying Unsafe Memory Access Sites

We implement an unsafe memory access sites identifi-
cation algorithm based on the SVF-2.4 version, using
context-insensitive and flow-insensitive Andersen’s points-to
analysis [27, 51]. It shows tolerable false positives when
calculating unsafe memory access sites while satisfying

the scalability that a sanitizer should have. The reason
why ERASAN established a context-insensitive and flow-
insensitive approach during the LLVM-IR analysis is that it
should not miss any check instrumentation for vulnerable
memory access sites.
Modifications to SVF. Rust programs frequently contain
InsertValueInst and ExtractValueInst instructions, which
are used to embed a value into a struct field or to retrieve
a value from it. However, SVF currently does not support
these instructions. Previously, when such instructions were
encountered, they were processed as a black hole, and
points-to analysis of such instructions is impossible. To
escape these holes, we followed the same manner [30] for
supporting LLVM instructions such as InsertValueInst and
ExtractValueInst instructions to SVF.

5.3. Selective ASan Check Instrumentation

We implement the ERASAN pass based on ASan in LLVM
14.0.6 [2], instrumenting unsafe memory accesses only, as
identified by ERASAN’s static analysis. Memory access
instructions are constantly checked by instrumentation to
ensure that they access in-bounds, valid objects in mem-
ory. Also, ERASAN follows the same memory allocation
instrumentation as ASan. This approach incurs an inevitable
overhead for red zone insertions and shadow memory man-
agement. However, the impact of these overheads on a Rust
program’s performance is not significant (i.e., about 9.6%
overhead described in §4.3). By maintaining full metadata
in a shadow memory, we can fully protect all objects in
memory from unexpected, unsafe raw pointer operations.

6. Evaluation

In this section, we evaluate ERASAN on five aspects:
unnecessary check reduction (§6.2), runtime overhead (§6.3),
compile time overhead (§6.4), bug detection capability (§6.5),
and comparison with ASan-- (§6.6).

6.1. Evaluation Setup

Evaluation Environment. All evaluations are conducted
on a machine equipped with a 10-core Intel(R) Core(TM)
i9-10900 CPU @ 2.80GHz, 64GB DDR4 RAM, and running
Ubuntu 22.04.1 LTS (GNU/Linux 6.2.0). We conducted all
experiments five times and reported the average number.
Baseline Configurations. To precisely evaluate the effi-
ciency of each proposed technique of ERASAN, we set
the baseline to ASan and implement three additional modes
besides ERASAN: ERASAN-unsafe, ERASAN-rawptr, and
ERASAN-thread. The ASan is a native address sanitizer (i.e.,
unmodified version). ERASAN-unsafe conducts an unsafe
block-based static analysis approach (not raw pointer-based).
This mode instruments every memory access reachable
from unsafe blocks in the Rust program. It is because
existing works such as XRUST [45] assume that only all
unsafe related codes are vulnerable. For this approach, we

9

TABLE 3: The comparison of unnecessary check reduction and runtime overhead between ASan, ERASAN-unsafe, ERASAN-rawptr,
and ERASAN against our selected benchmarks. Inst (#) presents the total llvm-ir instructions of the benchmark program. Check (#)
indicates the number of instrumented instructions. The Over. (%) represents runtime overhead over native. Redu. (%) presents the reduction
percentage compared to ASan.

Benchmark
ASan ERASAN-unsafe ERASAN-rawptr ERASAN-thread ERASAN
Check.

(#)
Check.

(#)
Redu.
(%)

Check.
(#)

Redu.
(%)

Check.
(#)

Redu.
(%)

Check.
(#)

Redu.
(%)

syn 260,805 214,566 17.71 155,985 40.17 90,648 65.24 85,235 67.31
rand (generator) 3,729 1,623 56.47 656 82.41 6 99.83 6 99.83
rand (misc) 2,343 1,482 37.74 280 88.05 6 99.83 6 99.74
crossbeam 2,086 766 63.28 496 76.22 179 91.42 179 91.42
itoa 1,167 659 43.53 210 82.01 0 100.0 0 100.0
base64 55,049 46,466 15.59 25,385 53.88 6,878 87.51 5,918 89.25
regex 9,442 7,738 18.04 5,292 43.95 894 90.53 894 90.53
memchr 203,592 190,066 6.644 125,216 38.49 59,459 73.09 26,434 88.03
hashbrown 14,518 11,923 17,87 5,381 62.94 1,396 90.38 1,188 91.82
smallvec 2,244 1,505 32.93 499 77.76 36 98.39 36 98.39
ryu 2,676 2,228 16.74 422 84.23 238 91.11 46 98.28
semver 1,056 759 28.13 250 76.32 30 97.16 30 97.16
strsim 974 897 7.906 452 57.19 44 95.48 34 96.78
bytes (bytes) 4,456 3,511 21.21 419 90.59 133 97.02 133 97.02
bytes (buf) 7,478 2,947 60.59 235 96.86 47 99.37 47 99.37
bytes-mut 5,095 4,138 18.78 722 85.83 85 98.33 85 98.33
indexmap 76,041 66,636 12.37 49,616 34.75 25,168 66.90 25,168 66.90
byteorder 5,242 2,126 59.44 906 82.72 49 99.07 49 99.07
num-integer 22,622 18,866 16.61 13,068 42.23 685 96.97 583 97.42
url 69,188 55,328 20.03 43,034 37.80 26,715 61.39 24,611 64.43
uuid (parse) 109,942 97,123 11.66 67,160 38.91 35,643 67.59 31,898 70.99
uuid (format) 110,558 97,637 11.68 67,141 39.27 35,657 67.75 31,926 71.12
unicode 1,762 1,700 3.518 1,162 34.05 41 97.67 41 97.67
Average 43,022 36,116 26.30% ↓ 24,521 62.95% ↓ 12,349 88.34% ↓ 10,197 90.03% ↓

(a) Unnecessary Check Reduction

Benchmark
ASan ERASAN-unsafe ERASAN-rawptr ERASAN-thread ERASAN
Over.
(%)

Over.
(%)

Redu.
(%)

Over.
(%)

Redu.
(%)

Over.
(%)

Redu.
(%)

Over.
(%)

Redu.
(%)

syn 471.14 407.02 64.12 328.40 142.74 302.58 168.56 200.26 270.88
rand (generator) 214.96 78.50 136.46 67.34 147.63 7.65 207.32 7.65 207.31
rand (misc) 58.93 37.22 21.71 10.96 47.97 0.21 58.73 0.21 58.73
crossbeam 45.71 12.35 33.36 2.49 43.22 0.39 45.31 0.39 45.31
itoa 660.27 94.69 565.57 31.76 628.51 21.04 639.22 21.04 639.23
base64 396.47 301.31 95.16 275.45 121.02 230.13 166.33 196.28 200.18
regex 530.32 476.63 53.69 449.37 80.96 306.19 224.13 306.19 224.13
memchr 458.05 225.06 232.99 51.73 406.32 44.42 413.63 31.47 426.58
hashbrown 360.73 332.77 27.96 280.97 79.76 73.01 287.73 65.85 294.87
smallvec 490.26 434.75 55.51 401.39 88.86 354.54 135.72 354.54 135.72
ryu 252.81 197.87 54.94 124.42 128.39 50.15 202.66 46.16 206.65
semver 583.76 555.95 27.81 397.19 186.56 252.88 330.86 252.88 330.87
strsim 275.73 262.22 13.51 97.42 178.32 38.87 330.88 34.39 241.33
bytes (bytes) 150.87 133.02 17.88 73.85 77.05 49.82 101.08 49.82 101.08
bytes (buf) 327.41 63.11 264.28 61.09 266.31 59.39 268.01 59.39 268.01
bytes-mut 134.96 106.59 28.37 98.54 36.42 55.95 79.02 59.95 79.02
indexmap 378.12 331.07 47.04 320.51 57.61 143.77 234.34 143.77 234.34
byteorder 330.15 72.80 257.34 54.59 275.56 15.22 314.93 15.22 314.93
num-integer 173.48 147.36 26.12 84.34 89.13 29.97 143.51 1.05 172.43
url 348.21 337.69 10.52 332.44 15.77 264.74 83.48 221.91 126.29
uuid (parse) 531.49 499.86 31.63 53.33 478.16 46.16 485.33 40.42 491.08
uuid (format) 242.72 170.05 72.69 105.47 137.25 67.31 175.40 55.47 187.25
unicode 288.13 287.89 0.25 253.96 34.18 46.32 241.82 46.32 241.82
Average 334.98% 241.99% 92.99% ↓ 172.04% 162.94%↓ 106.86% 228.12%↓ 95.94% 239.05%↓

(b) Runtime Overhead

insert unsafe block metadata at MIR code and perform
reachability analysis to insert ASan’s checks in all blocks
that are reachable from these unsafe blocks. ERASAN-rawptr
checks all memory accesses through all raw pointers and
their aliased pointers. This mode turns off our optimization
approaches, which distinguish between stack and heap objects
for safe check elimination (tracking-after-drop optimization).
Note that ERASAN cannot properly support multi-threaded
applications with this tracking-after-drop optimization since
the order of allocation and deallocation in codes executed
by threads cannot be guaranteed. To support multi-threaded
applications, we introduce ERASAN-rawptr mode, which
checks all problematic memory accesses without ERASAN’s
tracking-after-drop optimizations. However, this ERASAN-
rawptr mode does not provide the best runtime perfor-
mance compared to the ERASAN mode. We also intro-
duce ERASAN-thread mode that only applies tracking-after-
drop optimization to functions unrelated to threads. In this
ERASAN-thread mode, since codes executed in threads have
closure symbols (LLVM IR level), this mode identified
these codes marked with closure symbols and did not
apply ERASAN’s tracking-after-drop optimization to these
functions.
Evaluation Target Collection and Selection. For our
evaluation, we utilize the 23 benchmark tests from real-
world crates in crates.io [7], the Rust library repository.
To ensure fair selection, we select libraries that support
benchmark or unit tests after sorting all crates according to
their all-time downloads and stars since no widely accepted
benchmark is available for Rust, unlike SPEC CPU2017 [21]
for C/C++. However, we exclude some crates if the target
crate does not include benchmarks or provide a reasonable
test workload (e.g., conducts very short and few tests). All
selected crates and benchmarks are well-maintained and
updated frequently in their GitHub repository. To evaluate

the effectiveness of ERASAN, we use these benchmarks to
measure unneeded check reduction, the runtime overhead
after eliminating checks, compile-time overhead during static
analysis, and comparison with existing address sanitizer
optimization approaches.

6.2. Unnecessary Check Reduction

We evaluate how ERASAN effectively removes the ASan
checks using all of our 23 target benchmarks. This evaluation
measures the number of removed checks at compile time
(not runtime). As shown in Table 3-(a), the full ERASAN
eliminates 90.03% of sanitizer checks, while ERASAN-
unsafe removes 26.30% of them, ERASAN-rawptr 62.95%,
and ERASAN-thread 88.34%. Notably, ERASAN-unsafe,
unsafe Rust-based static analysis approach overapproximates
unsafe memory accesses. ERASAN achieves around 3.54
times fewer checks than ERASAN-unsafe (10,197 vs 36,116),
which demonstrates the importance of precise raw pointer-
based static analysis. When comparing ERASAN with
ERASAN-rawptr, we find that ERASAN’s optimization that
tracks memory access sites after drop and scope heap to
find safe accesses can remove 2.40 times more unneces-
sary checks (ERASAN’s 10,197 compared to ERASAN-
rawptr’s 24,521). In particular, ERASAN removes all of the
instrumented checks in several benchmark test suites (e.g.,
itoa and smallvec) since these benchmarks do not have
raw pointers after drops inside their test set, meaning that
these programs cannot have any temporal memory bugs at
runtime. ERASAN removes 1.21 times more checks than
ERASAN-thread does (ERASAN’s 10,197 vs ERASAN-
thread’s 12,349) due to relatively few codes executing in
threads.

10

6.3. Runtime Overhead

We now evaluate ERASAN’s runtime overhead reduction due
to reduced ASan’s check instrumentation. In this evaluation,
we repeatedly run each benchmark five times with the same
workload provided by each benchmark and calculate the
average execution time. Table 3-(b) compares the perfor-
mance overhead of ERASAN with others. On average,
after eliminating unnecessary check instrumentation, the
performance overhead is reduced by 239.05% for ERASAN,
92.99% for ERASAN-unsafe, 162.94% for ERASAN-rawptr,
and 228.12% for ERASAN-thread, compared to ASan’s
overhead. Thus, ERASAN is 3.49 times more efficient
than ASan, 2.52 times more than ERASAN-unsafe, 1.79
times more than ERASAN-rawptr, and 1.11 times more than
ERASAN-thread. The performance overhead of ERASAN
can be reduced by up to 639.23% (for itoa), which is the
highest checking overhead reduction case since ERASAN
eliminates all unnecessary checks. Additionally, in this case,
the measured maximum overhead of ASan is small (21.04%),
and ERASAN’s overhead has already reached 0%, making
it impossible to reduce further.

ERASAN achieves 146.05% better performance im-
provement over ERASAN-unsafe (ERASAN’s 95.94% vs.
ERASAN-unsafe’s 241.99%). To understand this perfor-
mance gap, we investigate the impact of an unsafe block-
based static analysis approach. For example, in the case of
unicode, ERASAN-unsafe treats 98.9% (1,700 out of 1,762)
of all memory access as reachable from unsafe blocks. In
contrast, ERASAN traces only 41 memory accesses through
raw pointers (and their aliases). These results reveal that
unsafe block-based approaches can generally lead to over-
approximate results and, therefore, high runtime checking
overheads. In contrast, our raw pointer-based approach allows
more precise and efficient memory access checks. As a
result, ERASAN successfully eliminates sanitizer checks
and improves the performance than ERASAN-unsafe.

We additionally study the effectiveness of our optimiza-
tion techniques. ERASAN also shows 76.10% improvement
over ERASAN-rawptr (ERASAN’s 95.94% vs. ERASAN-
rawptr’s 172.04%). The hashbrown benchmark test leads to
the most significant difference (around 215.12%) between
these two modes; ERASAN can eliminate the 4,016 out of
5,147 checks through our optimization that sanitizes memory
accesses considering the object stack and heap, reducing
runtime cost. Therefore, ERASAN successfully removes
safe heap and stack memory access checks that cannot
produce any temporal memory bugs, thereby reducing run
time performance overhead.

ERASAN only shows a 10.93% performance improve-
ment over ERASAN-thread (ERASAN’s 239.05% overhead
reduction vs. ERASAN-thread’s 228.12%). This is because
the features of ERASAN and ERASAN-thread are almost
identical; ERASAN-thread does not apply tracking-after-drop
optimization codes executed by threads, which is a relatively
small amount of code. However, in the syn benchmark test,
ERASAN-thread generates 102.32% more overhead than
ERASAN, which invokes the APIs (e.g., thread::spawn for

TABLE 4: Comparison between three Native, ASan, and ERASAN
compile-time overhead during benchmark tests. The Line (#)
indicates the number of source code lines. The Time (µs) represents
compile-time to micro-seconds. The Incre. (X) indicate the degree
of increased compile-time compared to Native.

Benchmark Program Native ASan ERASAN

Line (#) Time (µs) Time (µs) Incre. (X) Time (µs) Incre. (X)

syn 234,795 86,141 112,300 ×1.30 641,181 ×7.44
rand (generator) 20,859 1,393 2,058 ×1.47 2,509 ×1.80
rand (misc) 20,972 1,294 1,791 ×1.38 4,041 ×3.12
crossbeam 20,980 1,475 1,541 ×1.04 4,775 ×3.23
itoa 479 577 610 ×1.05 976 ×2.03
base64 7,120 9,716 27,305 ×2.81 135,143 ×13.81
regex 75,676 3,915 6,848 ×1.74 25,769 ×6.58
memchr 63,631 68,265 130,127 ×1.91 302,887 ×4.44
hashbrown 15,790 2,609 4,831 ×1.85 9,203 ×3.53
smallvec 3,688 852 1,361 ×1.59 1,629 ×1.91
ryu 3,930 917 1,478 ×1.61 1,859 ×2.02
semver 3,188 475 546 ×1.14 861 ×1.81
strsim 1,141 521 707 ×1.36 1,004 ×1.93
bytes (bytes) 9,936 1,432 2,180 ×1.52 5,170 ×3.61
bytes (buf) 10,082 1,173 2,123 ×1.81 5,511 ×4.69
bytes-mut 10,002 1,394 2,199 ×1.58 5,239 ×3.75
indexmap 11,166 19,441 40,387 ×2.08 94,720 ×4.87
byteorder 5,845 1,523 2,468 ×1.62 3,309 ×2.17
num-integer 2,939 5,130 8,321 ×1.62 15,280 ×2.98
url 26,864 11,917 26,016 ×2.18 63.487 ×5.32
uuid (parse) 7,745 18,634 39,103 ×2.09 102,997 ×5.53
uuid (format) 7,726 20,583 55,602 ×2.70 114,980 ×5.58
unicode 158,888 945 1,205 ×1.28 1,430 ×1.51

Average 31,454 9,579 10,527 ×1.72 ↑ 53,801 ×4.07 ↑

creating a new thread) for building a multi-threaded program
953 times. For programs that are not threaded (e.g., itoa
and semver), both ERASAN and ERASAN-thread have the
same performance improvement. These results show that
ERASAN-thread generates more overhead in multi-threaded
programs to check all the unsafe memory accesses found in
codes executed by threads.

ERASAN’s effectiveness varies depending on each
benchmark test. For example, in the case of bytes (buf),
ERASAN eliminates 38.78% more checks than ERASAN-
unsafe does. However, ERASAN only reduces the 3.72%
runtime overhead since only a small fraction of these checks
are actually executed during runtime. In this case, we can
further reduce the overhead by removing checks in hot
paths, i.e., highly executed and, therefore, well-tested code
paths [42, 54]. However, even if all or most of ASan’s
memory access checks were removed, runtime overheads
could persist because of other sources of ASan’s overheads,
such as shadow memory initialization and teardown or
memory poisoning. For instance, in the case of smallvec,
even after removing 98.39% of checks, considerable overhead
(354.54%) remains. This is mainly due to the overhead of
poisoning objects and the shadow memory initialization and
teardown at the beginning and end of the program’s execution.
While such overhead is typically a one-time cost and may
not significantly impact long-running benchmarks, it may
have a large impact on benchmarks performing repetitive
short tests [39].

6.4. Compile-time Overhead

Since ERASAN proposes and utilizes several static analysis
techniques, we measure the compile-time overhead incurred

11

TABLE 5: Detection capability of ASan and ERASAN on memory
vulnerabilities from the RustSec Advisory Database. In cases where
bug reports had both IDs present, we represented them using the
RUSTSEC ID.

RUSTSEC/CVE ID Crate Bug Type ASan ERASAN

RUSTSEC-2023-0005 tokio UAF ✔ ✔
RUSTSEC-2022-0070 secp UAF ✔ ✔
RUSTSEC-2022-0078 bumpalo UAF ✔ ✔
RUSTSEC-2021-0018 qwutils DF ✔ ✔
RUSTSEC-2021-0028 toodee DF ✔ ✔
RUSTSEC-2021-0031 nano_arena UAF ✔ ✔
RUSTSEC-2021-0033 stack-dst DF ✔ ✔
RUSTSEC-2021-0047 slice-deque DF ✔ ✔
RUSTSEC-2021-0130 lru UAF ✔ ✔
RUSTSEC-2021-0128 rusqlite UAF ✔ ✔
RUSTSEC-2021-0094 rdiff Heap Ovf. ✔ ✔
RUSTSEC-2021-0053 algorithmica DF ✔ ✔
RUSTSEC-2021-0049 through DF ✔ ✔
RUSTSEC-2021-0048 stackvector Stack Ovf. ✔ ✔
RUSTSEC-2021-0042 insert_many DF ✔ ✔
RUSTSEC-2021-0039 endian_trait DF ✔ ✔
RUSTSEC-2021-0003 smallvec Heap Ovf. ✔ ✔
RUSTSEC-2020-0167 pnet_packet Heap Ovf. ✔ ✔
RUSTSEC-2020-0097 xcb UAF ✔ ✔
RUSTSEC-2020-0091 arc-swap UAF ✔ ✔
RUSTSEC-2020-0061 futures NPD ✔ ✔
RUSTSEC-2020-0060 futures UAF ✔ ✔
RUSTSEC-2020-0039 simple-slab Heap Ovf. ✔ ✔
RUSTSEC-2020-0038 ordnung DF ✔ ✔
RUSTSEC-2020-0005 cbox UAF ✔ ✔
RUSTSEC-2019-0023 string-interner UAF ✔ ✔
RUSTSEC-2019-0009 smallvec DF ✔ ✔
RUSTSEC-2019-0034 http DF ✔ ✔

by ERASAN’s static analysis for each benchmark. Table 4
shows the compile-time overhead of Rust programs when
using ERASAN compared to native (i.e., compile time
without any sanitizer). ERASAN spends, on average, 4.07x
more time building the program than the native, while ASan
requires 1.72x more time. This is because ERASAN utilizes
static analysis to track all raw pointers, to perform point-
to and value-flow analysis, and to identify allocation types
traversing the SVFG. Such cost can vary (e.g., from 13.81
to 1.51 times) depending on the size and complexity of the
application. However, the static analysis of ERASAN is a
one-time cost overhead that occurs only at compile time
and makes runtime execution faster by removing sanitizer
checks.

6.5. Bug Detection Capability

ERASAN detects memory bugs based on the memory safety
violation patterns outlined in §3.2. However, if there are
corner cases for this pattern, ERASAN might produce false
negatives. To validate our design and implementation, we
evaluate ERASAN against real-world memory bugs, ensuring
that ERASAN precisely detects various real-world memory
bugs without any false negatives. Due to the absence of a
Rust-specific dataset measuring bug detection capabilities
comparable to the Juliet Test Suite [47] for C/C++, we

TABLE 6: The comparison of removed check between ASan-- and
ERASAN against our evaluation program set. Both represents the
result of checks removed by both ASan-- and ERASAN. Unremoved
indicates the number of checks that are not removed by either. Remv
(#) indicates the number of removed checks by each mode. Redu
(%) presents the removed percentage compared to ASan.

Benchmark
Only ASan-- Only ERASAN Both Unremoved
Remv.

(#)
Redu.
(%)

Remv.
(#)

Redu.
(%)

Remv.
(#)

Redu.
(%)

Remv.
(#)

Redu.
(%)

syn 27,038 10.37 118,387 45.39 57,183 21.93 58,197 22.31
rand (generator) 0 0 2,320 62.22 1,403 37.62 6 0.16
rand (misc) 0 0 1,247 53.22 1,090 46.52 6 0.25
crossbeam 40 1.92 1,334 63.95 573 27.47 139 6.66
itoa 0 0 839 71.89 328 28.11 0 0
base64 1,469 2.67 34,855 63.32 14,276 25.93 4,449 8.08
regex 252 2.67 6,663 70.57 1,885 19.96 642 6.79
memchr 18,785 8.49 108,703 49.18 57,598 26.06 35,932 16.26
hashbrown 305 2.10 7,862 54.14 5,471 37.68 883 6.08
smallvec 0 0 1,490 66.39 718 31.99 36 1.61
ryu 9 0.33 1,755 65.58 875 32.69 37 1.38
semver 17 1.61 649 61.46 377 35.70 13 1.23
strsim 4 0.41 611 62.73 329 33.78 30 3.08
bytes (bytes) 45 1.01 2,256 50.63 2,067 46.39 88 1.97
bytes (buf) 15 0.20 3,441 46.01 3,990 53.36 32 0.43
bytes-mut 27 0.52 2,680 52.60 2,330 45.73 58 1.14
indexmap 10,164 13.37 29,426 38.69 21,447 28.20 15,004 19.73
byteorder 11 0.21 3,482 66.43 1,711 32.64 38 0.72
num-integer 197 0.87 14,875 65.75 7,164 31.67 386 1.71
url 8,360 12.08 29,028 41.96 15,550 22.47 16,250 23.49
uuid (parse) 9,711 8.83 50,890 46.28 27,167 24.71 22,287 20.17
uuid (format) 9,712 8.78 51,161 46.27 27,471 24.85 22,214 20.09
unicode 6 0.34 1,120 63.56 601 34.11 35 1.98
Average 3,746 3.34% 20,655 56.88% 10,939 32.59% 7,680 7.19%

created our own test set that can reliably reproduce memory
bugs of different patterns. For this, we review all memory
bug reports in the RustSec Advisory Database [20], selecting
those that are reproducible (e.g., accompanied by a PoC).
Also, we select reports detectable by ASan and undetectable
by the Rust runtime. Cases where both ASan and the Rust
runtime detected violations are excluded. We focus on the
RustSec database, as it covers all Rust-related CVEs. In the
end, we created a set of 28 bug detection test cases that can
only be detected with ASan and not Rust. Table 5 presents
ERASAN’s detection capabilities. ERASAN successfully
detects all memory bugs in the 28 test cases, confirming that
these 28 real-world memory bugs are consistent with our
predefined memory bug patterns and that our optimization
techniques keep the detection capability of ASan.

6.6. Comparison with ASan--

We evaluate how ERASAN efficiently removes the ASan
checks compared to state-of-the-art, ASan-- [57]. For this
comparison, we port ASan-- to the LLVM version used
by ERASAN (from 12.0.0 to 14.0.6) since ASan-- is im-
plemented based on LLVM 12.0.0. As shown in Table 6,
the percentage of checks removed by both ASan-- and
ERASAN from ASan’s instrumentation is 32.59%. Moreover,
ERASAN exclusively removes 56.88% of checks, while
ASan-- removes only 3.34%. This difference originates from
the fact that ASan-- can remove redundant or adjacent
sanitizer checks, while ERASAN can remove checks that
become redundant (or unneeded) when considering Rust
safety rules. Consequently, these results show that ERASAN
is an efficient sanitizer optimized for Rust, capable of safely

12

removing a significant number of checks that even ASan--
cannot remove. Additionally, since these two approaches
are orthogonal, ERASAN can further eliminate 3.34% more
unnecessary checks by applying ASan--’s optimization.

7. Discussion

Remaining ASan Overhead Reduction. Although most
of ASan’s overhead originates [57] from memory access
checks and ERASAN removes these unnecessary checks,
ERASAN does not completely reduce all ASan’s overhead.
To further reduce ASan’s remaining overhead, we can avoid
inserting redzones when objects are allocated. However, if
some objects’ redzones are removed and attackers illegally
access these objects’ surrounding areas through manipulated
pointers, ASan cannot detect such attacks due to removed
redzones. Therefore, we do not attempt to remove ASan’s
redzone insertion overhead. Moreover, when ASan is applied
to repeated and short execution test environments (e.g.,
fuzzing), ASan incurs significant initialization and teardown
overheads mainly due to ASan’s heavy shadow memory.
To mitigate this, we can utilize the existing FuZZan [39]
approach to optimize ASan’s data structure instead of heavy
shadow memory to reduce these heavy initialization and
teardown overheads.

8. Releated Work

Our study relates to existing works on protecting Rust
programs against memory bugs and improving ASan perfor-
mance by removing unnecessary sanitizer checks.
Memory Bug Detection for Rust. Several static analysis-
based approaches [29, 31, 38, 43, 44] that can detect memory
bugs in Rust have been proposed. Rudra [29] defines and
detects three different types of memory bugs (e.g., panic
safety bug, higher-order invariant bug, and send/sync variance
bug). Then, Rudra conducts the static analysis to detect these
bugs by utilizing their unsafe data-flow checker and send/sync
variance checker. Rupair [38] conducts data-flow analysis to
cover buffer overflow by tracking the relation between the
definition and the usage site. SafeDrop [31] performs data-
flow analysis to detect temporal memory bugs by using their
modified Tarjan algorithm. In the case of MIRChecker [43],
it aims to detect memory bugs related to runtime panics and
lifetime corruption by utilizing static analysis and constraint-
solving techniques. However, these static analysis-based
approaches suffer from over-approximation analysis results
that can lead to false positives. Additionally, these approaches
have limited bug detection coverage, as they are generally
designed to detect only specific predefined memory bug types.
In contrast, ERASAN can detect various types of memory
bugs, as it maintains the same bug detection capability as
ASan. Additionally, unlike other static analyses, ERASAN
leverages more precise information available at runtime for
memory bug detection, resulting in significantly low false
positives like Asan.

The isolation approaches [30, 40, 41, 45] generally focus
on separating unsafe Rust from safe Rust to protect safe

Rust. XRust [45] proposes a new memory allocator that
splits memory into unsafe and safe regions and proposes
efficient reference checking approaches between regions.
Both TRUST [30] and PKRUsafe [40] utilize Intel MPK [48]
hardware features to more effectively separate safe and unsafe
Rust. Sandcrust [41] isolates Rust from foreign languages
(e.g., C/C++) that cannot ensure safety. However, these
approaches are unable to fundamentally remove memory bugs
because they are isolation (not bug detection) approaches.
Since memory bugs that occur even within unsafe areas can
affect (e.g., control flow hijacking attack) the entire program
operations, it is important to detect and remove memory
bugs using bug detection approaches like ERASAN.

Dynamic analysis approaches [11, 49] are widely used
to detect memory bugs. The MIRI interpreter [11] for Rust’s
mid-level intermediate representation (MIR) is designed to
detect memory bugs. Address Sanitizer (ASan) [49] is the
most widely used sanitizer [50] to detect memory bugs.
ASan consists of a compiler instrumentation module to
insert checking instrumentation and a runtime module to
detect bugs during runtime. ASan can easily be applied
to a target Rust program since ASan is integrated into
the Rust compiler [24] and can detect various types of
memory bugs. However, MIRI, an interpreter-based approach,
suffers from high overhead and limited detection coverage.
ASan also causes high overhead mainly due to unnecessary
checks in safe memory access guaranteed by ERASAN.
However, ERASAN significantly reduces ASan’s overhead
by eliminating these unnecessary checks while maintaining
ASan’s strengths, such as low false positives and broad
detection coverage.
Address Sanitizer Optimization. Several existing ap-
proaches [54, 56, 57] have been proposed to reduce ASan’s
performance overhead through various strategies that elimi-
nate unnecessary sanitizer checks. ASAP [54] profiles the
program to identify “hot” code paths that are executed more
frequently than others. ASAP eliminates checks in this hot
code, as they are sufficiently tested and expensive, and
maintains check codes in the “cold” code paths, which are ex-
ecuted less often and relatively less tested. SANRAZOR [56]
also profiles the program, but SANRAZOR aims to identify
and remove redundant checks. ASan-- [57] proposes several
optimization approaches that can identify optimizable ASan
checks, such as checks in loops and neighboring checks.
However, existing works have not considered unnecessary
checks for memory accesses in safe regions of Rust programs.
ERASAN is optimized for the Rust environment based on
our careful analysis of Rust safety rules. We also note that
ERASAN can complement these works to reduce ASan’s
performance overhead further.

9. Conclusion

Rust programs frequently have memory bugs due to improper
uses of unsafe Rust (more precisely, raw pointers). Although
several approaches have been proposed to address this, these
approaches suffer from high overhead and limited detection
coverage issues. This paper proposes an efficient address

13

sanitizer design tailored for Rust, ERASAN, which has the
same bug detection capability as ASan, yet is more efficient
than prior work. For this, ERASAN only instruments memory
accesses in both safe and unsafe code areas whose safety
cannot be guaranteed by Rust. Our evaluation shows that
ERASAN removes an average of 90.03% of existing ASan
checks and significantly reduces ASan performance overhead
by an average of 239.05% while showing the same bug-
finding ability as ASan. The open-source version of ERASAN
is available at https://github.com/S2-Lab/ERASan.

10. Acknowledgement

This work was supported by a Korea Internet & Security
Agency (KISA) grant funded by the Korean government
(PIPC) (No. 1781000003). This work was also supported by
the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support
program (IITP-2024-2021-0-01817) supervised by the IITP
(Institute for Information & Communications Technology
Planning & Evaluation). We gratefully acknowledge their
support.

References

[1] Address Sanitizer Algorithm. https://github.com/google/
sanitizers/wiki/AddressSanitizerAlgorithm.

[2] Address Sanitizer Pass. https://github.com/llvm/
llvm-project/blob/llvmorg-14.0.6/llvm/lib/Transforms/
Instrumentation/AddressSanitizer.cpp.

[3] Android Rust Introduction. https://source.android.com/
docs/setup/build/rust/building-rust-modules/overview.

[4] Borrow Check Rule. https://doc.rust-lang.org/1.8.0/
book/references-and-borrowing.html.

[5] Bound Check Rule. https://nnethercote.github.io/perf-
book/bounds-checks.html.

[6] Code generation. https://rustc-dev-guide.rust-lang.org/
backend/codegen.html.

[7] crate.io. https://crates.io/.
[8] Google joins the Rust Foundation. https:

//source.android.com/docs/setup/build/rust/building-
rust-modules/overview.

[9] Introduction of Rust Programming Language. https:
//doc.rust-lang.org/book/ch00-00-introduction.html.

[10] Microsoft is rewriting core Windows libraries
in Rust. https://www.theregister.com/2023/04/27/
microsoft-windows-rust/.

[11] MIRI (MIR Interpreter). https://github.com/rust-lang/
miri.

[12] Rust compiler development guide - sanitizers support.
https://rustc-dev-guide.rust-lang.org/sanitizers.html.

[13] Rust high-level intermediate representation. https://
rustc-dev-guide.rust-lang.org/hir.html.

[14] Rust Lifetime Rule. https://doc.rust-lang.org/book/ch10-
03-lifetime-syntax.html.

[15] Rust MIR. https://rustc-dev-guide.rust-lang.org/mir/
index.html.

[16] RUST NULL Value. https://doc.rust-lang.org/std/ptr/
fn.null.html.

[17] RUST Ownership Rule. https://doc.rust-lang.org/book/
ch04-01-what-is-ownership.html.

[18] Rust sanitizer guideline. https://doc.rust-lang.org/beta/
unstable-book/compiler-flags/sanitizer.html.

[19] Rust within the Linux Kernel. https://www.kernel.org/
doc/html/next/rust/index.html.

[20] RustSec. https://rustsec.org.
[21] SPEC CPU 2017. https://www.spec.org/cpu2017/.
[22] StatementKind Type. https://doc.rust-lang.org/

beta/nightlyrustc/rustc-middle/mir/syntax/
enum.StatementKind.html.

[23] TerminatorKind. https://doc.rust-lang.org/beta/nightly-
rustc/rustc-middle/mir/enum.TerminatorKind.html.

[24] The Description of RUST Compiler. https://github.com/
rust-lang/rust.

[25] Unsafe Destructors. https://doc.rust-lang.org/nomicon/
destructors.html.

[26] Unsafe Rust. https://doc.rust-lang.org/book/ch19-01-
unsafe-rust.html.

[27] Lars Ole Andersen. Program analysis and specialization
for the c programming language. In PhD thesis,
University of Cophenhagen, 1994.

[28] Vytautas Astrauskas, Christoph Matheja, Federico Poli,
Peter Müller, and Alexander J Summers. How do
programmers use unsafe rust? Proceedings of the ACM
on Programming Languages, 4(OOPSLA):1–27, 2020.

[29] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon
Lim, and Taesoo Kim. Rudra: finding memory safety
bugs in rust at the ecosystem scale. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 84–99, 2021.

[30] Inyoung Bang, Martin Kayondo, Hyungon Moon, and
Yunheung Paek. Trust: A compilation framework for in-
process isolation to protect safe rust against untrusted
code. In 32nd USENIX Security Symposium (USENIX
Security 23). Baltimore, MD: USENIX Association,
2023.

[31] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan
Zhou. Safedrop: Detecting memory deallocation bugs
of rust programs via static data-flow analysis. arXiv
preprint arXiv:2103.15420, 2021.

[32] RustSec Advisory Database. Rustsec-2019-0016. https:
//rustsec.org/advisories/RUSTSEC-2019-0016.html.

[33] RustSec Advisory Database. Rustsec-2020-0097. https:
//rustsec.org/advisories/RUSTSEC-2020-0097.html.

[34] Dmitry Vyukov. Address/thread/memorysanitizer
slaughtering c++ bugs. https://www.slideshare.net/
sermp/sanitizer-cppcon-russia.

[35] Dmitry Vyukov. Syzbot. https://syzkaller.appspot.com/
upstream.

[36] Google. Address sanitizer found bugs.
https://github.com/google/sanitizers/wiki/
AddressSanitizerFoundBugs.

[37] Google. Kernel address sanitizer (kasan), a fast memory
error detector for the linux kernel. https://github.com/
google/kasan/wiki.

14

https://github.com/S2-Lab/ERASan
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/llvm/llvm-project/blob/llvmorg-14.0.6/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
https://github.com/llvm/llvm-project/blob/llvmorg-14.0.6/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
https://github.com/llvm/llvm-project/blob/llvmorg-14.0.6/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html
https://nnethercote.github.io/perf-book/bounds-checks.html
https://nnethercote.github.io/perf-book/bounds-checks.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://crates.io/
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://doc.rust-lang.org/book/ch00-00-introduction.html
https://doc.rust-lang.org/book/ch00-00-introduction.html
https://www.theregister.com/2023/04/27/microsoft-windows-rust/
https://www.theregister.com/2023/04/27/microsoft-windows-rust/
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doc.rust-lang.org/std/ptr/fn.null.html
https://doc.rust-lang.org/std/ptr/fn.null.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.html
https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.html
https://www.kernel.org/doc/html/next/rust/index.html
https://www.kernel.org/doc/html/next/rust/index.html
https://rustsec.org
https://www.spec.org/cpu2017/
https://doc.rust-lang.org/beta/nightlyrustc/rustc-middle/mir/syntax/enum.StatementKind.html
https://doc.rust-lang.org/beta/nightlyrustc/rustc-middle/mir/syntax/enum.StatementKind.html
https://doc.rust-lang.org/beta/nightlyrustc/rustc-middle/mir/syntax/enum.StatementKind.html
https://doc.rust-lang.org/beta/nightly-rustc/rustc-middle/mir/enum.TerminatorKind.html
https://doc.rust-lang.org/beta/nightly-rustc/rustc-middle/mir/enum.TerminatorKind.html
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://doc.rust-lang.org/nomicon/destructors.html
https://doc.rust-lang.org/nomicon/destructors.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://rustsec.org/advisories/RUSTSEC-2019-0016.html
https://rustsec.org/advisories/RUSTSEC-2019-0016.html
https://rustsec.org/advisories/RUSTSEC-2020-0097.html
https://rustsec.org/advisories/RUSTSEC-2020-0097.html
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki

[38] Baojian Hua, Wanrong Ouyang, Chengman Jiang, Qil-
iang Fan, and Zhizhong Pan. Rupair: towards automatic
buffer overflow detection and rectification for rust. In
Annual Computer Security Applications Conference,
pages 812–823, 2021.

[39] Yuseok Jeon, WookHyun Han, Nathan Burow, and
Mathias Payer. FuZZan: Efficient sanitizer metadata
design for fuzzing. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 249–263, 2020.

[40] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per
Larsen, Adrian Dabrowski, David Gens, Yeoul Na,
Stijn Volckaert, and Michael Franz. Pkru-safe: au-
tomatically locking down the heap between safe and
unsafe languages. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 132–
148, 2022.

[41] Benjamin Lamowski, Carsten Weinhold, Adam Lack-
orzynski, and Hermann Härtig. Sandcrust: Automatic
sandboxing of unsafe components in rust. In Proceed-
ings of the 9th Workshop on Programming Languages
and Operating Systems, pages 51–57, 2017.

[42] Julian Lettner, Dokyung Song, Taemin Park, Stijn
Volckaert, Per Larsen, and Michael Franz. Partisan:
Fast and flexible sanitization via run-time partitioning.
In International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2018.

[43] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John CS Lui. Mirchecker: detecting bugs in rust
programs via static analysis. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2183–2196, 2021.

[44] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John CS Lui. Detecting cross-language memory
management issues in rust. In European Symposium
on Research in Computer Security, pages 680–700.
Springer, 2022.

[45] Peiming Liu, Gang Zhao, and Jeff Huang. Securing
unsafe rust programs with xrust. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, pages 234–245, 2020.

[46] Barton P Miller, Lars Fredriksen, and Bryan So. An
empirical study of the reliability of unix utilities.
Communications of the ACM, 33(12):32–44, 1990.

[47] Nist. Software assurance reference dataset. https://
samate.nist.gov/SARD/test-suites.

[48] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software abstraction for intel
memory protection keys (Intel MPK). In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
241–254, 2019.

[49] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer:
A fast address sanity checker. In 2012 USENIX annual
technical conference (USENIX ATC 12), pages 309–318,
2012.

[50] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. Sok: Sanitizing for security. In 2019 IEEE

Symposium on Security and Privacy (SP), pages 1275–
1295. IEEE, 2019.

[51] Yulei Sui and Jingling Xue. Svf: Interprocedrual
static value-flow analysis in llvm. In In Proceedings
of the 25th International Conference on Compiler
Construction, CC 2016, pages 265–266. New York,
NY, USA, 2016. Association for Computing Machinery,
2016.

[52] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Elim-
inating redundant bounds checks in dynamic buffer
overflow detection using weakest preconditions. IEEE
Transactions on Reliability, 65(4):1682–1699, 2016.

[53] Vlad Tsyrklevich. Gwp-asan: Sampling heap memory
error detection in-the-wild, 2021.

[54] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In 2015 IEEE Symposium on Security
and Privacy, pages 866–879. IEEE, 2015.

[55] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan
Zhou, and Michael R Lyu. Memory-safety challenge
considered solved? an in-depth study with all rust
cves. ACM Transactions on Software Engineering and
Methodology (TOSEM), 31(1):1–25, 2021.

[56] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He,
and Zhendong Su. SANRAZOR: Reducing redundant
sanitizer checks in C/C++ programs. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21), pages 479–494, 2021.

[57] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis,
Nikos Triandopoulos, and Jun Xu. Debloating address
sanitizer. In Usenix Security Symposium, 2022.

15

https://samate.nist.gov/SARD/test-suites
https://samate.nist.gov/SARD/test-suites

Appendix A.
Algorithm of ERASAN

Algorithm 1: The core algorithm of ERASAN

Input : I, Sg

I: a given LLVM-IR instruction set;
Sg: a sparse value flow graph, SVFG;
Ah ⇐ a set of heap alloc sites accessible by rawptr;
As ⇐ a set of stack alloc sites accessible by rawptr;
Ar ⇐ a set of rawptr memory alloc sites;

1 1. Collects all instructions annotated with rawptr metadata

2 forall inst ∈ I do
3 if inst.hasMetaData(“!rawptr”) then
4 Ar ⇐ PointsToAnalysis(inst, Sg);

5 2. Perform Raw Pointer Allocation Sites Analysis

6 Ss ⇐ ∅; // a set of stack SVFGNode
7 Sh ⇐ ∅; // a set of heap SVFGNode
8 forall a ∈ Ar do
9 if Ss.contains(a) then

10 As.insert(a);
11 return;
12 else if Sh.contains(a) then
13 Ah.insert(a);
14 return;
15 else
16 if is_drop_traits(a,Sg) then
17 As.insert(a);
18 Sh.update(a.getDFSPath);
19 else
20 Ah.insert(a);
21 Ss.update(a.getAllVisitedPaths);

22 3. Perform Raw Pointer Access Sites Analysis
23 3-1. Heap : Tracking Memory Access Sites After Drop
24 forall ah ∈ Ah do
25 Sh ← ValueFlowAnalysis(ah, Sg);
26 forall sh ∈ Sh do
27 if isAccessSite(sh) and is_after_drop(sh) then
28 inst← sh.getLLVMInst();
29 inst.setMetadata();

30 3-2. Stack : Tracking Memory Access Sites After Scope
31 forall as ∈ As do
32 Ss ← ValueFlowAnalysis(as, Sg);
33 forall ss ∈ Ss do
34 if isAccessSite(ss) and is_after_scope(ss) then
35 inst← ss.getLLVMInst();
36 inst.setMetadata();

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper introduces ERASAN, an efficient address sanitizer
specifically designed for the Rust programming language.
ERASAN aims to reduce unnecessary memory access checks
by leveraging Rust’s stringent safety features, such as owner-
ship. The authors have carried out an extensive investigation
of 581 memory bugs reported between 2016 and 2023,
providing a detailed analysis of these issues. Based on the
key insight that code related to raw pointers are prone to
have memory bugs, ERASAN focuses on identifying raw
pointers and employs static analysis to detect all mem-
ory accesses—both in safe and unsafe Rust code—that
are performed using these pointers and therefore require
security checks. The empirical evaluation demonstrates that
ERASAN reduces ASAN’s performance overhead by 61.6%
and eliminates 93.6% instructions on average.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) This work conducts a comprehensive analysis of Rust
memory bugs in real-world applications, classifying
common patterns of these defects.

2) Based on the key insight that memory bugs are solely
associated with raw pointer manipulations, it designs
and implements ERASAN, which authors pledge to
release as open source.

3) The evaluation results demonstrate that ERASAN can
substantially decrease the number of instrumentations
required by ASAN, thereby enhancing performance
during fuzz testing.

16

	Introduction
	Background and Motivation
	Security Rule of Rust
	Address Sanitizer

	Real-World Rust Memory Bugs Analysis
	Memory Safety Implications of Unsafe Rust
	Real-World Rust Memory Bug Patterns

	ERASan Design
	Raw Pointer Annotation
	Unsafe Memory Access Sites Identification
	Identify Object Type at Allocation Site
	Identify Unsafe Memory Access Sites

	Selective ASan Check Instrumentation

	Implementation
	Annotating Raw Pointers
	Identifying Unsafe Memory Access Sites
	Selective ASan Check Instrumentation

	Evaluation
	Evaluation Setup
	Unnecessary Check Reduction
	Runtime Overhead
	Compile-time Overhead
	Bug Detection Capability
	Comparison with ASan--

	Discussion
	Releated Work
	Conclusion
	Acknowledgement
	Appendix A: Algorithm of ERASan
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

